Math, asked by arshihassan8, 9 months ago

the angle of elevation of a jet plane from a point a on the ground is 60 degree after a flight of 15 second the angle of elevation changes to 30 degree if the jet plane is flying at a constant height of 1500 root 3 metre find the speed of the jet​

Answers

Answered by Anonymous
162

Answer:

\setlength{\unitlength}{1.5cm}\begin{picture}(0,0)\linethickness{0.6mm}\qbezier(1, 0)(1,0)(1,3)\qbezier(4,0)(4,0)(4,3)\qbezier(1,3)(1,3)(4,3)\qbezier( - 2,0)(8.2,0)(1,0)\qbezier( - 2,0)(1,3)(1,3)\qbezier( - 1,0)( - 0.59,0.6)(  - 1, 0.5)\qbezier( - 0.45, 0)(  0.5,1.4)(  - 1.4,0.67)\qbezier( - 2, 0)(4,2.9)( 4,3)\put(0.9,-0.3){$\sf D$}\put( - 0.8,0.2){30{$^\circ$}}\put(4.1,-0.2){$\sf C $}  \put( - 2,-0.32){$\sf P$}\put(  - 0.2, 0.1){60{$^\circ$}}\put(4.1,3){$\sf B$}\put(0.9,3.1){$\sf A$}\put(4.1,1.2){$\sf 1500\sqrt{3}  \: m$}\put(1.1,1){$\sf 1500\sqrt{3}$}\put(4.1,2){$\sf Opposite  \: Side$}\put(1.8,-0.3){$\sf Adjacent\: Side$}\end{picture}

  • Let A be the original position of the jet plane.
  • And B be the position of the Jet plane after 15 seconds.

=> \sf Speed = \dfrac{Distance \:  \:  \:  \leftarrow(distance \: AB)}{Time \:  \:  \: (given)} \\  \\

=>\sf Distance \:   AB = Distance \:  CD  \\  \\

=>\sf CD  = PC - CD \\  \\

__________________

=>\sf  \tan( \theta)  =\dfrac{Opposite \:  side}{Adjacent  \: Side}  \\  \\

\sf In \: \Delta ADP, \\

=>\sf  \tan(60^{ \circ} )  =\dfrac{1500 \sqrt{3} }{PD}  \\  \\

=>\sf   \sqrt{3}   =\dfrac{1500 \sqrt{3} }{PD}  \\  \\

=>\sf PD ( \sqrt{3} ) =1500 \sqrt{3}   \\  \\

=>\sf   PD=\dfrac{1500 \sqrt{3} }{ \sqrt{3} }  \\  \\

=>\sf   PD=1500 \: m  \\  \\

_________________...

\sf In \:  \Delta BCP,

=>\sf  \tan(30^{ \circ} )  =\dfrac{1500 \sqrt{3} }{PC}  \\  \\

=>\sf   \dfrac{1}{ \sqrt{3} }  =\dfrac{1500 \sqrt{3} }{PC}  \\  \\

=>\sf  PC =  1500 \sqrt{3} \left(\sqrt{3} \right) \\  \\

=>\sf  PC =4500 \: m   \\  \\

____________________...

=>\sf  CD = 4500 - 1500  \\  \\

=>\sf  CD = 3000 \: m  \\  \\

=>\sf  AB = 3000  \: m\\  \\

  • Therefore, Speed of jet plane is :]

=>\sf  Speed \:  of \:  jet \:  plane = \dfrac{3000}{15} \\  \\

=>\sf  Speed \:  of \:  jet \:  plane = 200 \:m/s  \\  \\

Similar questions