Math, asked by pp212042, 10 months ago

the angle of elevation of a ladder leaning against a wall is 60degrees and the foot of the length of ladder is 4.6 m away from the wall .the length of the ladder is​

Answers

Answered by mysticd
2

 From \:the \: figure \:above ,

 In \: \triangle ABC ,

 Distance \:from \:base \:of \:the \: wall \:to

 foot \:of \:the \: ladder ( BC) = 4.6 \:m

 Angle \:of \: elevation \: a \: ladder \: leaning

 a \:wall \: is \: 60\degree

 Cos 60\degree = \frac{CB}{AC}

 Let \: length \:of \: the \: ladder = AC

 \implies \frac{1}{2} = \frac{4.6}{AC}

 \implies AC = 4.6 \times 2

 \implies AC = 9.2 \:m

Therefore.,

\red{Length \:of \: the \: ladder} \green{=9.2 \:m}

•••♪

Attachments:
Answered by Anonymous
4

\bf{\underline{\underline{\bigstar\bigstar\: Figure : }}}\\

\:\:

\setlength{\unitlength}{1.6mm}\thickline\put(5.8,0){\line(-1,1){25}}\put(-19,0){\line(1,0){25}}\put(-19,0){\line(0,1){25}}\qbezier(0,5.5)(-4,3)(0,0)\put(-9,-2){4.6m}\put(-5,2){{60}^{\circ}}\put(-7,15){hypotenuse}\put(-24,15){height}\put(-17.5,-2){\huge{\square}}

\:\:

\bf{\underline{\underline{\bigstar\bigstar Given : }}}\\

\:\:

  • \footnotesize{ Angle \: of \: elevation = {60}^{\circ} }\\

  • \footnotesize{ Distance \: between \: foot \: of \: ladder \: from \: wall(Base)  = 4.6m }\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: To \: Find : }}}\\

\:\:

  • \footnotesize{ Length \: of \: ladder(hypotenuse)  }\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution :}}}\\

\:\:

\footnotesize{ Cos\theta = \dfrac{base}{hypotenuse} }\\

\footnotesize{\implies Cos{60}^{\circ} = \dfrac{4.6m}{hypotenuse} }\\

\footnotesize{\implies \dfrac{1}{2} = \dfrac{4.6m}{hypotenuse} }\\

\footnotesize{\implies hypotenuse = 4.6m \times 2 }\\

\footnotesize{\implies hypotenuse = 9.2m }\\

\:\:

\bold{ Length \: of \: ladder(hypotenuse) = 9.2m }\\

Similar questions