Math, asked by InnocentBOy143, 1 year ago

The angle of elevation of a vertical pillar stands on a horizontal plane from any place is ∅. On moving 'a' distance towards the pillar the angle becomes 45° & further moving b distance it becomes (90°-∅). Find the height of pillar.

Answers

Answered by Anonymous
16

SOLUTION ⬆️

Refer to the attachment.

Hope it helps ☺️

Attachments:
Answered by lublana
5

The height of pillar=\frac{ab}{a-b}

Step-by-step explanation:

Let height  of pillar=h

BE=x

DE=a

CD=b

BC=x-(a+b)

BD=x-(a+b)+b=x-a

In triangle ABC

\theta=\phi

tan\theta=\frac{AB}{BC}=\frac{h}{x-(a+b)}...(1)

By using \frac{Perpendicular\;side}{Base}=tan\theta

In triangle ABD

tan45^{\circ}=\frac{AB}{BD}=\frac{h}{x-a}

h=x-a

Because tan45^{\circ}=1

In triangle ABE

tan(90-\phi)=\frac{h}{x-(a+b)}

cot\phi=\frac{h}{x-(a+b)}..(2)

usingcot\theta=tan(90-\theta)

Multiply equation (1) by (2)

tan\theta\times cot\theta=\frac{h^2}{x(x-(a+b))}

We know that

cot\theta=\frac{1}{tan\theta}

Using the formula

1=\frac{h^2}{x(x-(a+b))}

h^2=x(x-(a+b))

h^2=(h+a)(h-b)

h^2=h^2-bh+ah-ab

h^2-h^2+bh-ah=-ab

-h(a-b)=-ab

h=\frac{-ab}{-(a-b)}=\frac{ab}{a-b}

Hence, the height of pillar=\frac{ab}{a-b}

#Learn more:

https://brainly.in/question/1906711

Attachments:
Similar questions