Math, asked by squeezeee, 6 months ago

The angle of elevation of an aeroplane from a point A on the ground is 60°. After a flight to 30 seconds, the angle of elevation changes to 30°. If the plane is flying at a constant height of
3600√3 meters, find the speed of the aeroplane.

Answers

Answered by Anonymous
23

 \boxed{ \boxed{ \overline {\underline{ \bf \red{SOLUTION ☻ }}}}}

 \rm \: Let \: OX \: be \: the \: horizontal \: ground, \: A \: and \: B \: be \: the \: two \: positions

 \rm \: of \: the \: plane \: and \: O \: be \: the \: point \: of \: observation.

 \rm \: Here, \: AC = BD = 3600 \sqrt{3 \: } m

 \angle \rm AOC = 60 \degree \: and \:  \angle  BOD   = 30 \degree

 \rm \: In \: right \: angled \:  \triangle OCA,

 \rm \: cot \: 60 \degree =  \frac{OC}{AC}

 \longrightarrow \:  \rm \frac{1}{ \sqrt{3} } =  \frac{OC}{3600 \sqrt{3} }

 \longrightarrow \:  \rm \:  OC = 3600 \: m

 \rm \: In \: right \: angled \:  \triangle ODB, \:

 \rm \: cot \: 30 \degree \:  =  \frac{OD}{BD}

 \longrightarrow \:  \rm \:  \sqrt{3}  =  \frac{OD}{3600 \sqrt{3} }

 \longrightarrow \:  \rm \: OD = 3600 \times 3 = 10800 \: m

 \rm \: now \: CD = OD - OC = 10800 - 3600

 \rm = 7200 \: m.

 \rm \: Thus, \: distance \: covered \: by \: plane \: is \: 30 \: s \: is \: 7200 \: m.

 \therefore \:  \rm \: Speed \: of \: aeroplane =  \frac{7200}{30} \times  \frac{60 \times 60}{1000} =  \red{864 \: km/h}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg( \because \rm \: Speed =  \frac{distance}{time} \bigg) \\

 \rm \: Hence, \: speed \: of \: aeroplane \: is \:   \underline{ \underline{  \red{864 \: km/h.}}}

Attachments:
Answered by BeautifulWitch
2

Answer:

{ \purple{ \tan 60° =  \frac{3000 \sqrt{3} }{x} }}

{ \purple{x=  \frac{3000 \sqrt{3} }{ \sqrt{3} }  = 3000m}}

{ \purple{ \tan 30° =  \frac{3000 \sqrt{3} }{ \frac{1}{ \sqrt{3} }  }  = 9000m}}

Distance covered :

{ \purple{ 9000 - 3000 = 6000m}}

{ \purple{speed =  \frac{6000}{30} }}

{ \huge{ \boxed{ \purple{speed = 200 m/s}}}}

Step-by-step explanation:

Hope this helps you ✌️

Attachments:
Similar questions