Math, asked by Brainly212, 6 days ago

The angle of elevation of an aeroplane from a point P on the ground is 60°. After 15 seconds of flight, the angle of elevation changes to 30 degrees . If the aeroplane is flying at a speed of 720 km/hour, find its height.


If you solve this question then I'll give you 10 brainlist position by asking 10 questions....

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given that,

The angle of elevation of an aeroplane from a point P on the ground is 60°.

After 15 seconds of flight, the angle of elevation changes to 30 degrees .

The aeroplane is flying at a speed of 720 km/hour.

Let assume that the aeroplane is at the height of h m from the ground level.

So, QR = ST = h m

As it is given that,

\rm \: Speed \: of \: aeroplane \:  =  \: 720 \: km \: per \: hour \\

\rm \: =  \:720 \times \dfrac{5}{18}  \: m \: per \: sec \\

\rm \: =  \:200  \: m \: per \: sec \\

So, Distance covered by plane during 15 seconds is

\rm \: =  \:15 \times 200 \:

\rm \: =  \:3000 \: m \\

So, RS = QT = 3000 m

Now, from the figure,

In triangle PQR

\rm \: tan60 \degree \:  =  \: \dfrac{QR}{PQ}  \\

\rm \:  \sqrt{3}  \:  =  \: \dfrac{h}{x}  \\

\rm\implies \:h \:  =  \:  \sqrt{3}x - -   - (1) \\

Now, In triangle PTS

\rm \: tan30 \degree \:  =  \: \dfrac{TS}{PT}  \\

\rm \:  \dfrac{1}{ \sqrt{3} }  \:  =  \: \dfrac{h}{PQ + QT}  \\

\rm \:  \dfrac{1}{ \sqrt{3} }  \:  =  \: \dfrac{ \sqrt{3} x}{x + 3000}  \\

\rm \: x + 3000 = 3x \\

\rm \: 2x = 3000 \\

\rm\implies \:x \:  =  \: 1500 \: m \\

On substituting the value of x, in equation (1), we get

\rm\implies \:h \:  =  \: 1500 \sqrt{3}  \: m \\

So,

\rm\implies \:Height \: of \: the \: aeroplane \:  =  \: 1500 \sqrt{3}  \: m \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions