Math, asked by uditarora61, 7 months ago

The angle of elevation of the cloud from a point 60 m above take is 30° and the

angle of depression of the reflection of the cloud in the take is 60°. Find the

height of the cloud.​

Answers

Answered by amansharma264
11

CORRECT QUESTION.

The angle of a elevation of a cloud from a point

60 m above the surface to the water of a lake

30° and the angle of depression of its shadow

from the same point in water lake is 45°

find the height of the cloud from the surface

of the water.

EXPLANATION.

 \sf :  \implies \: according \: to \: the \: question \\  \\ \sf :  \implies \: in \: right \: angled \: triangle \:  =  \triangle \: bec \\  \\  \sf :  \implies \:  \tan( \theta) =  \frac{perpendicular}{base} \\  \\  \sf :  \implies \:  \tan(30 \degree)  =  \frac{be}{bc} \\  \\ \sf :  \implies \:  \frac{1}{ \sqrt{3} }   =  \frac{h - 60}{be} \\  \\   \sf :  \implies \: be \:  =  \sqrt{3}(h - 60) \:  \: .....(1)

 \sf :  \implies \: in \: right \: angle \: triangle \:  =  \triangle \: bed \\  \\ \sf :  \implies \:  \tan( \theta)  =  \frac{perpendicular}{base}  \\  \\\sf :  \implies \:  \tan(60 \degree)  =  \frac{h + 60}{be} \\  \\  \sf :  \implies \:  \sqrt{3} =  \frac{h + 60}{be} \\  \\  \sf :  \implies \:  \sqrt{3}be = h + 60 \:  \: ....(2)

\sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \\  \\ \sf :  \implies \: put \: the \: value \: of \: equation \: (1) \: in \: (2) \\  \\ \sf :  \implies \:   \sqrt{3} \times \sqrt{3}  (h - 60) = h + 60 \\  \\  \sf :  \implies \: 3(h - 60) = h + 60 \\  \\ \sf :  \implies \: 3h - 180 = h + 60 \\  \\ \sf :  \implies \: 2h = 240 \\  \\ \sf :  \implies \: h = 120 \: m \\  \\ \sf :  \implies \:  \green{{ \underline{height \: of \: cloud \:  = 120 \: m \:}}}

Attachments:
Answered by Anonymous
6

Let AB be the surface of the lake and P be the point of observation such that AP = 60 m.

Let C be the position of the cloud and C be its reflection in the lake.

Then CB =

 \rm Draw  \: PM \perp CB

Let CM = h

 \therefore \rm CB = h + 60 m

 \rm In  \: \triangle \:  CPM

 \rm \tan30 \degree = \frac{CM}{PM}

 \rm ➨   \frac{1}{ \sqrt{3} }  = \frac{h}{PM}

 \rm ➨   PM =   \sqrt{3} h.......(i)

 \rm In  \: \triangle \:  PMC,

 \rm ➨\tan60 \degree = \frac{C ' M}{PM}

 \rm ➨  \tan60 \degree = \frac{C'B + BM}{PM}

 \rm ➨   \sqrt{3} = \frac{h + 60m + 60m}{PM}

 \rm ➨   \sqrt{3} = \frac{h +120m}{PM} .......(ii)

 \rm☄from \: eq(i) \: and \: eq(ii)

 \rm ➨   \sqrt{3}h = \frac{h  + 120m}{ \sqrt{3} }

 \rm \implies3h = h + 120m

 \rm \implies3h  - h= 120m

 \rm \implies2h   =  120

 \rm \implies h   =   \frac{ \cancel{120}}{ \cancel{2} } = 60m

 \rm \implies h  = 60m

 \rm ➯  CB = h + 60m = 60m + 60m = 120m

 ⇾  \rm Thus,the \: height \: of \: the \: cloud \: from \: the \: surface \\  \rm of \: lake \boxed{ \rm120m.}

Attachments:
Similar questions