Math, asked by kavya5142, 4 months ago

The angle of elevation of the sun when the length of the shadow of a pole is √3 times,
then find the height of the pole.​

Answers

Answered by itzsecretagent
105

\sf\small{ \underline{\underline\red{ \pmb{Solution:-}}}}

Let the height of the pole (AB) = h .

Length of the shadow (BC) = √3h

Let e denotes the angle of elevation of the Sun.

In ∆ ABC, tan = perpendicular/base

 \tt \: tan   \: \theta =  \frac{AB}{BC} \\  \\  \tt \: tan \: \theta =  \frac{h}{ \sqrt{3}h }  \\  \\  \tt \: tan  \:  \theta= \frac{1}{ \sqrt{3} }  \\  \\  \tt \: tan \:  \theta = tan \:  30° \\  \\  \tt \theta = 30°

Hence, the angle of elevation of the Sun is 30°.

Attachments:
Similar questions