Math, asked by anushadimri20, 7 months ago

The angle of elevation of the top of a
building from a point on the ground,
which is 30 m away from the foot of
the building, is 30°. The height of the
building is:
(A) 10 m
(B) 30/03 m
(C) 03/10 m
(D) 30 m​

Answers

Answered by sonisiddharth751
4

given options are incorrect .

correct options are :-

  1. 10 m
  2. 30/√3 m
  3. √3/30 m
  4. 30 m

option (2) is correct . 30/3 m

we have :-

  • angle of elevation on the ground from top of the building = 30⁰
  • the distance from foot of ground = 30m

To find :-

the height of the building .

Solution :-

the case in which from the top of building to the ground all these makes a right angle traingle .

so,

in ∆ABC

let AB be the height of building = h metre

 \sf \: as \: we \: know \: that \:  \:  \: \dfrac{perpendicular}{base}  =  tan \theta  \\ \\ \\ \sf \dfrac{AB}{BC}  =  tan \theta \:  \\  \\  \bf \: so \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \dfrac{h}{30}  =  tan 30 \degree \\  \\ \sf the\: value\: of \: \bf {tan 30\degree\: is  \dfrac{1}{ \sqrt{3} }     } \:  \\  \\  \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \dfrac{h}{30}  =  \frac{1}{ \sqrt{3} }  \\  \\ \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  h  \sqrt{3}  = 30 \\  \\ \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  h =  \dfrac{30}{ \sqrt{3} } \: m \:   \\  \\

therefore height of building =  \sf<strong> </strong> h =  \dfrac{30}{ \sqrt{3} } \: m

more concepts :-

\sf \red{sin \theta = \dfrac{perpendicular}{hypotenuse}}  \\ \\ \\\sf \blue{cos \theta = \dfrac{base}{hypotenuse}  }\\ \\ \\\sf\pink{ tan  \theta =  \dfrac{perpendicular}{base}} \\ \\ \\\sf \red{cot  \theta = \dfrac{1}{tan\theta}=\dfrac{base}{perpendicular}} \\ \\ \\\sf\blue{ cosec \theta = \dfrac{1}{sin\theta} =  \dfrac{hypotenuse}{perpendicular}}\\ \\ \\\sf\green{ sec \theta =  \dfrac{1}{cos\theta}=  \dfrac{hypotenuse}{base}}

Answered by asmitadholiya77
0

Answer:

akaksjjsjxkdxfidksoekeoxhsjsjs

Similar questions