Math, asked by Jegadheesh, 1 year ago

the angle of elevation of the top of a building from the foot of a tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60 degree if the tower is 50 metre high find the height of the building


Jegadheesh: pls say fastly
Jegadheesh: Anton
Jegadheesh: anyone

Answers

Answered by ajay196
2
the height of building is 50 / 3
Answered by Anonymous
3

Step-by-step explanation:

The angle of elevation of the top of a building from the foot of the tower is 30°.

The angle of elevation of the top of tower from the foot of the building is 60°.

Height of the tower is 50 m.

Let the height of the building be h.

Step-by-step explanation:

\sf In  \: \Delta BDC \\

:\implies \sf tan  \: \theta = \dfrac{Perpendicular}{Base} \\  \\

:\implies \sf tan  \: 60^{\circ}  = \dfrac{CD}{BD} \\  \\

:\implies \sf  \sqrt{3}   = \dfrac{50}{BD} \\  \\

:\implies \sf BD =  \dfrac{50}{ \sqrt{3} }  \: m\\  \\

___________________

\sf In \:  \Delta ABD, \\

\dashrightarrow\:\: \sf tan \: 30 ^{\circ}  =   \dfrac{AB}{BD}  \\  \\

\dashrightarrow\:\: \sf  \dfrac{1}{ \sqrt{3} } = \dfrac{AB}{BD} \\  \\

\dashrightarrow\:\: \sf  \dfrac{1}{ \sqrt{3} } = \dfrac{h}{ \dfrac{50}{ \sqrt{3} } } \\  \\

\dashrightarrow\:\: \sf  h = \dfrac{ 50 }{ \sqrt{3}  \times  \sqrt{3} } \\  \\

\dashrightarrow\:\:  \underline{ \boxed{\sf  Height= \dfrac{50}{3} \: m }}\\  \\

\therefore\:\underline{\textsf{Height of the building is \textbf{50/3 meter}}}. \\

Attachments:
Similar questions