The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of
depression from the top of the tower of a foot of the hill is 30°. If the tower is 50 m high, find
the height of the hill
Answers
Given :-
- AB is the hill having h metre height
- DC the tower having 50 meter height.
- Angle ACB is 60° and Angle DBC is 30° .
- The height of hill H = 50 + y m
Solution :-
Taking the triangle DBC .
Here Perpendicular is 50m ( DC ) and Base is x m(CB)
Angle DCB is 90° and angle DBC is 30° .
Now base of triangle DBC is equivalent to the base of triangle ABC.
Now taking triangle ABC
Here Perpendicular is AB( H meter ) and base is CB(50√3 m)
Angle ABC is 90° and Angle ACB is 60°

Answer:
Given :-
AB is the hill having h metre height
DC the tower having 50 meter height.
Angle ACB is 60° and Angle DBC is 30° .
The height of hill H = 50 + y m
Solution :-
Taking the triangle DBC .
Here Perpendicular is 50m ( DC ) and Base is x m(CB)
Angle DCB is 90° and angle DBC is 30° .
\sf{ \red{ : \implies} \: \tan( \theta) \: = \dfrac{perpendicular}{base} }:⟹tan(θ)=
base
perpendicular
\sf{ \red{ : \implies} \: \tan( 30) \: = \dfrac{50}{x} }:⟹tan(30)=
x
50
\sf{ \red{ : \implies} \: \dfrac{1}{\sqrt{3}} \: = \dfrac{50}{x} }:⟹
3
1
=
x
50
\sf{ \red{ : \implies} \: 50 \sqrt{3} \: = x }:⟹50
3
=x
Now base of triangle DBC is equivalent to the base of triangle ABC.
Now taking triangle ABC
Here Perpendicular is AB( H meter ) and base is CB(50√3 m)
Angle ABC is 90° and Angle ACB is 60°
\sf{ \red{ : \implies} \: \tan( \theta) \: = \dfrac{perpendicular}{base} }:⟹tan(θ)=
base
perpendicular
\sf{ \red{ : \implies} \: \tan( 60) \: = \dfrac{H}{50 \sqrt{3} } }:⟹tan(60)=
50
3
H
\sf{ \red{ : \implies} \: \sqrt{3} \: = \dfrac{H}{50 \sqrt{3} } }:⟹
3
=
50
3
H
\sf{ \red{ : \implies} \: \sqrt{3} \times 50 .\sqrt{3} = H }:⟹
3
×50.
3
=H
\sf{ \red{ : \implies} \: 3 \times 50 = H }:⟹3×50=H
\underline{\underline{\sf{ \red{ : \implies} \: 150 = H }}}
:⟹150=H
Step-by-step explanation: