The angle of elevation of the top of a pillar from point on the ground is 15° on walking 100 m towards the tower, the angle of elevation is found to be 30.Calculate the height of the tower (where tan 15 =2-13).
please solve it correctly ...........
Answers
Answer :
Height of tower = 50 m
Solution :
Let, height of the tower be 'h'.
From the figure,
In ∆ABD,
θ = 30°
x = h√3 ----- eq 1
In ∆ABC,
------ eq 2
From equation 1 and 2,
h = 50
∴ Height of tower = 50 m
✿ Solution :- ✿
Let the height of tower be H & Base of ∆₁ be x
By observing the given figure ,
tan30° = H/x
Substituting tan30° = 1/√3
⇒ 1/√3 = H/x
By cross - multiplying ,
⇒ x = H√3 …eq(1)
Now , ∆₂
tan15° = H/x + 100m
Substituting , tan15° = 2 - √3 [ ∵ Given ]
⇒ 2 - √3 = H/x + 100m
⇒ 2 - √3 = H/[ H√3 + 100 ] [ ∵ eq(1) ]
By cross - multiplying ,
⇒ H = ( 2 - √3 ) [ H√3 + 100 ]
⇒ H = 2H√3 + 200 - H(√3)(√3) - 100√3
⇒ H = 2H√3 + 200 - 3H - 100√3
⇒ H + 3H - 2H√3 = 200 - 100√3
⇒ 4H - 2H√3 = 200 - 100√3
⇒ H( 4 - 2√3 ) = 200 - 100√3
⇒ H = 200 - 100√3/( 4 - 2√3 )
⇒ H = 100( 2 - √3 )/2 ( 2 - √3 )
⇒ H = 100/2
⇒ Height of tower = 50 m
Hence , height of tower = 50m