Math, asked by Love4077, 7 months ago

The angle of elevation of the top of a pillar from point on the ground is 15° on walking 100 m towards the tower, the angle of elevation is found to be 30.Calculate the height of the tower (where tan 15 =2-13).


please solve it correctly ...........​

Attachments:

Answers

Answered by yashaswini3679
38

Answer :

Height of tower = 50 m

Solution :

  \\

Let, height of the tower be 'h'.

From the figure,

In ∆ABD,

θ = 30°

 tan \: 30° = \frac{h}{x}

 \frac{1}{\sqrt{3}} = \frac{h}{x}

x = h√3 ----- eq 1

  \\

In ∆ABC,

  tan \: 15°  =   \frac{h}{x + 100}

  2-\sqrt{3} =   \frac{h}{x + 100}

  x =   \frac{h}{2 - \sqrt{3}}-100 ------ eq 2

  \\

From equation 1 and 2,

  h\sqrt{3} =   \frac{h}{2 - \sqrt{3}}-100

  h\sqrt{3} + 100 =   \frac{h}{2 - \sqrt{3}}

  (h\sqrt{3} + 100)(2 - \sqrt{3}) =   h

  2h\sqrt{3}- 3h + 200 - 100\sqrt{3} =   h

  200 - 100\sqrt{3} =   4h - 2h\sqrt{3}

  100 - 50\sqrt{3} =   2h - h\sqrt{3}

  50(2 - \sqrt{3} )=   h(2 - \sqrt{3})

h = 50

  \\

∴ Height of tower = 50 m

Attachments:
Answered by ItzArchimedes
38

Solution :-

Let the height of tower be H & Base of ∆₁ be x

By observing the given figure ,

tan30° = H/x

Substituting tan30° = 1/3

⇒ 1/√3 = H/x

By cross - multiplying ,

x = H√3 eq(1)

Now , ∆₂

tan15° = H/x + 100m

Substituting , tan15° = 2 - 3 [ Given ]

⇒ 2 - √3 = H/x + 100m

⇒ 2 - √3 = H/[ H√3 + 100 ] [ eq(1) ]

By cross - multiplying ,

⇒ H = ( 2 - √3 ) [ H√3 + 100 ]

⇒ H = 2H√3 + 200 - H(√3)(√3) - 100√3

⇒ H = 2H√3 + 200 - 3H - 100√3

⇒ H + 3H - 2H√3 = 200 - 100√3

⇒ 4H - 2H√3 = 200 - 100√3

⇒ H( 4 - 2√3 ) = 200 - 100√3

⇒ H = 200 - 100√3/( 4 - 2√3 )

⇒ H = 100( 2 - √3 )/2 ( 2 - √3 )

⇒ H = 100/2

Height of tower = 50 m

Hence , height of tower = 50m

Attachments:
Similar questions