Math, asked by yasaswinichandragiri, 3 months ago

The angle of elevation of the top of a tower at a point on the horizontal line through the foot of the tower is 45°.After walking a distance of 80m towards the foot of the tower along the same horizontal line, the angle of elevation of the top of the tower changes at 60°.Find the height of the tower.​

Answers

Answered by RvChaudharY50
0

Given :- The angle of elevation of the top of a tower at a point on the horizontal line through the foot of the tower is 45°.After walking a distance of 80m towards the foot of the tower along the same horizontal line, the angle of elevation of the top of the tower changes at 60°.

To Find :- Find the height of the tower. ?

Answer :-

Let us assume that, the height of the tower is h m and the length of horizontal line is b m .

so,

→ tan 45° = h / b

→ h = b .

now, after walking 80m towards foot of the tower ,

→ Line left = (b - 80)m .

then,

→ tan 60° = h / (b - 80)

→ √3 = h / (h - 80)

→ √3h - 80√3 = h

→ √3h - h = 80√3

→ h = 80√3/(√3 - 1)

→ h = (80*1.73) /(1.73 - 1)

→ h = (80 * 1.73) / 0.73

→ h ≈ 189.6 m (Ans.)

Learn more :-

The diagram shows two planks are slanted on a vertical wall.

Express cot x in terms of p.

https://brainly.in/question/24608435

Similar questions