Math, asked by Anonymous, 9 months ago

the angle of elevation of the top of a tower from a certain points is 30°. if the observer moves 20 m towards the tower,the angle of elevation of the top of the tower increases by 15°. the height of the tower is​

Answers

Answered by prince5132
40

GIVEN :-

★ The angle of elevation of the top of a tower from a certain point is 30°. If the observer moves 20 m towards the tower the angle of elevation of the top of the tower increased by 15°.

TO FIND :-

  • The height of the tower. AC

SOLUTION :-

Let the angle of elevation be ∅.

Here , in the figure if we will see then ,there are two right angled triangles formed.

In APC,

 \\  :  \implies  \displaystyle\sf \:  \tan \theta \:  =  \dfrac{perpendicular}{base} \\  \\  \\

 :  \implies  \displaystyle\sf \:  \tan45 ^{ \circ}  =  \dfrac{AC}{PC}  \\  \\  \\

 :  \implies  \displaystyle\sf1 = \dfrac{AC}{PC}  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \bigg \lgroup  \tan45 ^{ \circ}  = 1 \bigg \rgroup\\  \\  \\

 :  \implies  \displaystyle\sf AC = PC \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \bigg \lgroup \: Equation \ 1 \bigg \rgroup\\  \\

Now in ABC,

\\  :  \implies  \displaystyle\sf \:  \tan \theta \:  =  \dfrac{perpendicular}{base} \\  \\  \\

 :  \implies  \displaystyle\sf \:  \tan30 ^{ \circ}  =  \dfrac{AC}{BC}  \\  \\  \\

:  \implies  \displaystyle\sf \dfrac{1}{ \sqrt{3} } = \dfrac{AC}{BC}  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \bigg \lgroup  \tan30^{ \circ}  =  \dfrac{1}{ \sqrt{3} }  \bigg \rgroup\\  \\  \\

:  \implies  \displaystyle\sf \dfrac{1}{ \sqrt{3} } = \dfrac{AC}{BP + PC}  \\  \\  \\

:  \implies  \displaystyle\sf \dfrac{1}{ \sqrt{3} } = \dfrac{AC}{20 +AC }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg\lgroup \:  \because \: Equation \  1 \bigg\rgroup \\  \\  \\

:  \implies  \displaystyle\sf  \sqrt{3}  \: AC = 20 + AC \\  \\  \\

:  \implies  \displaystyle\sf  \sqrt{3}  \: AC  -AC = 20  \\  \\  \\

:  \implies  \displaystyle\sf    \: AC  (\sqrt{3}  - 1) = 20 \\  \\  \\

:  \implies  \displaystyle\sf    \: AC  (1.73  - 1) = 20 \\  \\  \\

:  \implies  \displaystyle\sf    \: AC  (0.73  ) = 20 \\  \\  \\

:  \implies  \displaystyle\sf    \: AC  =  \frac{20}{0.73}  \\  \\  \\

:  \implies  \displaystyle\sf   \underline{ \boxed{   \sf \: \: AC \:   \approx 27.39 }} \\  \\

 \therefore \underline{ \displaystyle\sf \:   Height  \: of  \: the \:  tower  , AC \:  is   \: \: 27 . 39  \: m. \: }

Attachments:

Anonymous: Amazing ( ◜‿◝ )♡
Answered by kolpepratham05
9

Answer:

hii here is your answer

Step-by-step explanation:

mark as brain list

Attachments:
Similar questions