Math, asked by tjfkroerhtntm, 4 days ago

The angle of elevation of the top of a tower from a point A due south of the tower is 60° and from B due east of the tower is 45°. If AB = 50 m, then the height of the tower is:- (Take √3 as 1.73)
(a) 49.45 (b) 43.25 (c) 38.93 (d) 42.13

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that,

The angle of elevation of the top of a tower from a point A due south of the tower is 60° and from B due east of the tower is 45°.

Further given that, AB = 50 m

Let assume that CD represents the tower whose height is h meter.

Now, In right triangle BCD

\rm \: tan45\degree = \dfrac{CD}{BC}  \\

\rm \: 1 = \dfrac{h}{BC}  \\

\rm\implies \:BC \:  =  \: h \:  \\

Now, In right triangle ACD

\rm \: tan60\degree = \dfrac{CD}{AC}  \\

\rm \:  \sqrt{3}  = \dfrac{h}{AC}  \\

\rm\implies \:AC \:  =  \:  \dfrac{h}{ \sqrt{3} }  \\

Now, In right triangle ABC, right angled at C

Using Pythagoras Theorem, we have

\rm \:  {AB}^{2}  \:  =  \: {BC}^{2}  +  {AC}^{2}  \\

On substituting the values, we get

\rm \: \dfrac{ {h}^{2} }{3} + {h}^{2} =  {50}^{2}

\rm \: \dfrac{ {h}^{2} + 3 {h}^{2}  }{3} =  {50}^{2}

\rm \: \dfrac{4 {h}^{2} }{3} =  {50}^{2}

\rm \: \dfrac{2{h} }{ \sqrt{3} } =  {50}

\rm \: h = 25 \sqrt{3}

\rm \: h = 25  \times 1.73 \\

\rm\implies \:h \:  =  \: 43 .25 \: m \\

So, option (b) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Similar questions