the angle of elevation of the top of a tower is observe from a point on the ground is 'a' and on moving a distance 'c' towards the tower the angle of elevation is 'b'.prove that the height of the tower is
Answers
Answered by
2
Solution:
Given:
A
I\\
l \ \
I \ \
I \ \
I \ \
I \ \
I \ \
L____b \__a\ (c represents angle)
B C D
I--------I
c
(Rough diagram)
AB=height (represent as h)
tan a = AB/BD =AB/BC+c
tan b = AB/BC
hence,
c(tan a)(tan b)/tan b - tan a c(AB/BC+c)(AB/BC)
=----------------------------------
AB/BC-AB/BC+c
c(AB²/BC²+BCc)
=---------------------------------------------
AB(BC+c)-AB(BC)/(BC)(BC+c)
cAB(AB/(BC²+BCc))
=---------------------------------------------
AB(BC+c-BC)/(BC²+BC+c)
cAB(AB)
=---------------------
AB(c)
= cAB(AB)/ABc
=AB=h=RHS hence proved
Hope It Helps
Given:
A
I\\
l \ \
I \ \
I \ \
I \ \
I \ \
I \ \
L____b \__a\ (c represents angle)
B C D
I--------I
c
(Rough diagram)
AB=height (represent as h)
tan a = AB/BD =AB/BC+c
tan b = AB/BC
hence,
c(tan a)(tan b)/tan b - tan a c(AB/BC+c)(AB/BC)
=----------------------------------
AB/BC-AB/BC+c
c(AB²/BC²+BCc)
=---------------------------------------------
AB(BC+c)-AB(BC)/(BC)(BC+c)
cAB(AB/(BC²+BCc))
=---------------------------------------------
AB(BC+c-BC)/(BC²+BC+c)
cAB(AB)
=---------------------
AB(c)
= cAB(AB)/ABc
=AB=h=RHS hence proved
Hope It Helps
sivaprasath:
Mark as Brainliest
Similar questions
Math,
8 months ago
Computer Science,
8 months ago
English,
8 months ago
English,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago