Math, asked by mohan8411, 1 year ago

The angle of elevation of the top of a tower standing on a horizontal plane from the two points lying
on a line passing through the foot of the tower at distances a and b respectively are complementary
angles. if the line joining the two points sutends an angle o at the top of the tower, then sine is​

Answers

Answered by IamIronMan0
1

Answer:

Let tower of heigh h .

Now see diagram

 \tan( \alpha )  =  \frac{h}{a}  \\  \\  \tan( \alpha  +  \theta)  =  \frac{h}{b}  \\ divide \: \:  both \:  \: eliminate \:  \: h \\  \\ a \tan( \alpha )  = b \tan( \alpha  +  \theta)

Given that 90 - α and 90-α-0 are complimentary angles

90 -  \alpha  + 90 -  \alpha  -  \theta = 90 \\  \alpha  =   \frac{\pi}{4}  -  \theta

So

a \tan( \frac{\pi}{4}  -  \theta)  = b \tan(\frac{\pi}{4}  -  \theta  +   \theta)  \\  \\ a( \frac{1 +  \tan( \theta) }{1 -  \tan( \theta) } ) = b \\  \\  \tan( \theta)  =  \frac{a + b}{b - a}  \\  \\  \sin( \theta)  =  \frac{a + b}{ \sqrt{ {(a + b)}^{2} +  {(b - a)}^{2}  } }  =  \frac{a + b}{ \sqrt{2( {a}^{2}  +  {b}^{2} )} }

Attachments:
Answered by isyllus
3

\sin\theta=\dfrac{b-a}{b+a}

Step-by-step explanation:

Let the height of tower be h

Please refer attachment for figure.

∠C and ∠D are complementary angle.

Therefore,  ∠C + ∠D = 90°

In ΔABC, ∠B = 90°

\tan \alpha=\dfrac{BC}{AB}

\tan \alpha=\dfrac{a}{h} -----------(1)

In ΔABD, ∠B = 90°

\tan \alpha=\dfrac{BD}{AB}

\tan (\alpha+\theta)=\dfrac{b}{h} -----------(2)

Eliminate h from eq(1) and eq(2)

a\tan(\alpha+\theta)=b\tan \alpha -------- (3)

\angle C=90^\circ-\alpha

\angle D=90^\circ-(\alpha+\theta)

But ∠C + ∠D = 90°

90^\circ-\alpha+90^\circ-(\alpha+\theta)=90^\circ

2\alpha=90^\circ-\theta

\alpha=45^\circ-\dfrac{\theta}{2}

Substitute alpha in equation 3

a\tan(45^\circ-\dfrac{\theta}{2}+\theta)=b\tan (45^\circ-\dfrac{\theta}{2})

a\tan(45^\circ+\dfrac{\theta}{2})=b\tan (45^\circ-\dfrac{\theta}{2})

a\cdot \dfrac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}=b\cdot \dfrac{1-\tan(\frac{\theta}{2})}{1+\tan(\frac{\theta}{2})}

\dfrac{a}{b}=\left(\frac{1-\tan\frac{\theta}{2}}{1+\tan\frac{\theta}{2}}\right)^{2}

where, \dfrac{1-\tan\frac{\theta}{2}}{1+\tan\frac{\theta}{2}}=\sqrt{\dfrac{1-\sin\theta}{1+\sin\theta}}

\dfrac{a}{b}=\dfrac{1-\sin\theta}{1+\sin\theta}

Using componendo and Dividendendo

\dfrac{a+b}{a-b}=\dfrac{2}{-2\sin\theta}

\sin\theta=\dfrac{b-a}{b+a}

Learn more:

Trigonometry identity

https://brainly.in/question/13455460

Attachments:
Similar questions