Math, asked by magdalenemagdaleneka, 3 months ago

the angle of elevation of the top of a tree from a point, which is 20m away from the foot of the tree,is 60°.Find the height of the tree.(take √3=1.73) answer in detail​

Answers

Answered by hp0610
1

Answer:

height of the tree is 34.60m.

Attachments:
Answered by Anonymous
4

Given:-

  • Angle of elevation of the top of a tree from a point on ground is 60°
  • Distance of that point from the foot of the tree = 20 m

To Find:-

  • Height of the tree

Note:-

  • Refer to the attachment for the figure.

Solution:-

Here in this scenario a right-angled triangle is being formed in which,

AB = 20 m

∠ABC = 60°

We know,

\sf{TanB = \dfrac{Perpendicular}{Base}}

Hence,

\sf{Tan60^\circ = \dfrac{AC}{AB}}

From Trigonometric Table we have,

Tan60° = √3

Hence,

\sf{\sqrt{3} = \dfrac{AC}{20}}

\sf{\implies AC = 20\sqrt{3}}

Taking √3 as 1.73

AC = 20 × 1.73

=> AC = 34.6 m

Therefore the height of the tree is 34.6 m

______________________________________

Explore more:-

Trigonometric table is very important for solving these kind of sums.

Here is the trigonometric table:-

Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

______________________________________

Attachments:
Similar questions