The angle of elevation of top point P of vertical tower PQ of height h from point A is 45 and from point B is at a distance d from point A measure along the line AB which makes an angle 30 with AQ. Prove that d=h( Ö 3-1)
Answers
Answered by
1
"∴ ∠ APM = 60° :
Also PN ⊥ AB, therefore AN = NM = 20 m
⇒ AP = 40 m
Let angles of elevation of top of the tower from A, N and B be α, θ and β respectively. ATQ, tan θ = 2
In ∆ PQN tan θ = PQ/PN
⇒ 2 = h/PN ⇒ PN = h/2 . . . . . . . . . . . . . . . . . . . (1)
Also in ∆APM, ∠APM = 60° (being equilateral ∆) and PN is altitude ∴ ∠APN = 30°(as in equilateral ∆
altitude bisects the vertical angle.
∴ In ∆APN tan ∠ APN = AN/PN
⇒ tan 30°= 20 / h/2 [Using eq. (1)]
⇒ h/2√3 = 20 ⇒ h = 40√3m.
In ∆APQ tan α = h/AP ⇒ tan α = 40√3/40 = √3
⇒ α = 60° Also in ∆ABQ tan β = h/PB but in rt ∆PNB
∴ PB = √1200 + 3600 = √4800 = 40 √3
∴ tan β = 40 √3/40 √3 ⇒ tan β = 1 ⇒ β = 45°
Thus h = 40 √3m ; ∠’s of elevation are 60°, 45°
"
Similar questions
Computer Science,
7 months ago
Science,
7 months ago
English,
7 months ago
Accountancy,
1 year ago
Science,
1 year ago