Physics, asked by vyominiSingh21, 8 months ago

the angle of prism of refractive index 1.5 is 60 degree. what will be the angle of minimum deviation of prism. sin 49 =0.75​

Answers

Answered by rocky200216
15

\bigstar \sf{\red{\underline{\underline{\purple{Correct\:Answer\::38°}}}}}

\bigstar \sf{\green{\underline{\underline{\orange{CONCEPTS:-}}}}}

If Angle of Prism (A) , Refractive index (n) is given and asked to find Angle of minimum deviation , then formula will be

  • \tt{n\:=\:{\dfrac{\sin({\dfrac{A\:+\:{\delta_{min}}}{2}})}{\sin({\dfrac{A}{2}})}}}

Where

  1. n = refractive index
  2. A = angle of Prism
  3. {\delta_{min}} = angle of minimum deviation

\bigstar \sf{\green{\underline{\underline{\orange{To\:Find:-}}}}}

Angle of minimum deviation of prism

\bigstar \sf{\green{\underline{\underline{\orange{SOLUTION:-}}}}}

☞ GIVEN :-

  • n = 1.5
  • A = 60
  • sin (49°) = 0.75

Now we have know that,

\tt{n\:=\:{\dfrac{\sin({\dfrac{A\:+\:{\delta_{min}}}{2}})}{\sin({\dfrac{A}{2}})}}}

\tt{\implies\:1.5\:=\:{\dfrac{\sin({\dfrac{60\:+\:{\delta_{min}}}{2}})}{\sin({\dfrac{60}{2}})}}}

\tt{\implies\:1.5\:\times\:0.5\:=\:{\sin({\dfrac{60\:+\:{\delta_{min}}}{2}})}}

\tt{\implies\:{\sin(49)}\:=\:{\sin({\dfrac{60\:+\:{\delta_{min}}}{2}})}}

\tt{\implies\:49\:=\:{\dfrac{60\:+\:{\delta_{min}}}{2}}}

\tt{\implies\:98\:=\:60\:+\:{\delta_{min}}}

\tt{\implies\:{\delta_{min}}\:=\:98\:-\:60}

\tt{\implies\:{\delta_{min}}\:=38°}

\bigstar\:\underline{\boxed{\bf{\red{Required\:Answer\::38°}}}}

Answered by kashishkausar
0

Answer:

n= 1.5

A= 60°

sin 49°

  • n= sin (A+Smin )
  • 2.
  • sin A
  • 2

1.5= sin (60+Smin)

2.

sin 60

2

1.5×0.5 sin(60+Smin)

sin (49°) = sin (60+Smin)

2

49 = 60+Smin

2

98= 60+Smin

Smin = 98-60

Smin = 38°

THE ANSWER IS 38°

Similar questions