Math, asked by kumarsharmainder71, 4 months ago

the angle of quadrilaterals are in the ratio 3 ratio 5 ratio 9 ratio thirteen ratio. find all the the angles of quadrilaterals​

Answers

Answered by Anonymous
12

Question-:

  • The angles of quadrilateral are in ratio 3 : 5 : 9 : 13 .Find all angles of quadrilateral.

AnswEr-:

  • \underline{\boxed{\mathrm {\dag{\red{  The\:measure \:\:of\;all\:angles\:of\:Quadrilateral \:are\:36^{0} ,60^{⁰} , 108^{⁰}\:and\:156^{⁰}}}}}}

Explanation-:

  • \sf{Given \:That-:}

  • The angles of quadrilateral are in ratio 3 : 5 : 9 : 13 .

  • \sf{To \:Find-:}

  • The all angles of Quadrilateral.

\dag{\mathrm{Solution \:For \:Question \:-: }}

  • \sf{Let's \:Assume-:}

  • The all angles of quadrilateral be 3x , 5x , 9x and 13 x .

Then ,

  •  \frak{All\:Angle \: -:} \begin{cases} \sf{Angle\:1\:or\:\angle A= \frak{3x^{0}}} & \\\\ \sf{ Angle\:2\:or\:\angle B\:=\:\frak{5x^{0}}}& \\\\ \sf{ Angle\:3:or\:\angle C\:=\:\frak{9x^{0}}}& \\\\ \sf{ Angle\:4\:or\:\angle D\:=\:\frak{13x^{0}}}\end{cases} \\\\

  • As we know that ,

  • \underline{\boxed{\mathrm {\dag{\red{  The\:toatl\:sum\:of\;angles\:of\:Quadrilateral \:is\:360^{0}}}}}}

  • Or ,

  • \underline{\boxed{\mathrm {\dag{\red{\angle A  + \angle B + \angle C + \angle D \:=\:360^{0}}}}}}

Here ,

  •  \frak{Here\: -:} \begin{cases} \sf{Angle\:1\:or\:\angle A= \frak{3x^{0}}} & \\\\ \sf{ Angle\:2\:or\:\angle B\:=\:\frak{5x^{0}}}& \\\\ \sf{ Angle\:3:or\:\angle C\:=\:\frak{9x^{0}}}& \\\\ \sf{ Angle\:4\:or\:\angle D\:=\:\frak{13x^{0}}}\end{cases} \\\\

  • Now by putting known or Given Values-:

  • \longrightarrow {\mathrm {3x + 5x + 9x + 13 x = 360^{⁰}}}

  • \longrightarrow {\mathrm {8x + 9x + 13 x = 360^{⁰}}}

  • \longrightarrow {\mathrm {17x + 13 x = 360^{⁰}}}

  • \longrightarrow {\mathrm {30 x = 360^{⁰}}}

  • \longrightarrow {\mathrm {x = \dfrac{\cancel {360}}{\cancel {30}}}}

  • \longrightarrow {\mathrm { x = 12 }}

Therefore-:

  • \longrightarrow{\mathrm{ x = 12 }}

Now ,

  •  \frak{By\:Putting \:x =12-:} \begin{cases} \sf{Angle\:1\:or\:\angle A= \frak{3x=3\times 12=36^{⁰}}} & \\\\ \sf{ Angle\:2\:or\:\angle B\:=\:\frak{5x=5\times 12 = 60^{⁰}}}& \\\\ \sf{ Angle\:3:or\:\angle C\:=\:\frak{9x= 9 \times 12 = 108^{⁰}}}& \\\\ \sf{ Angle\:4\:or\:\angle D\:=\:\frak{13x= 13 \times 12 = 156^{⁰}}}\end{cases} \\\\

Hence ,

  • \underline{\boxed{\mathrm {\dag{\red{  The\:measure \:\:of\;all\:angles\:of\:Quadrilateral \:are\:36^{0} ,60^{⁰} , 108^{⁰}\:and\:156^{⁰}}}}}}

________________________________________

\huge {\mathrm { ♡Verification-: }}

  • \underline{\boxed{\mathrm {\dag{\red{  The\:toatl\:sum\:of\;angles\:of\:Quadrilateral \:is\:360^{0}}}}}}
  • Or ,
  • \underline{\boxed{\mathrm {\dag{\red{\angle A  + \angle B + \angle C + \angle D \:=\:360^{0}}}}}}

 \frak{Here-:} \begin{cases} \sf{Angle\:1\:or\:\angle A= \frak{36^{⁰}}} & \\\\ \sf{ Angle\:2\:or\:\angle B\:=\:\frak{ 60^{⁰}}}& \\\\ \sf{ Angle\:3:or\:\angle C\:=\:\frak{ 108^{⁰}}}& \\\\ \sf{ Angle\:4\:or\:\angle D\:=\:\frak{156^{⁰}}}\end{cases} \\\\

Now , By Putting known and Given Values-:

  • \longrightarrow {\mathrm {36 + 60 + 108 + 156  = 360^{⁰}}}

  • \longrightarrow {\mathrm {96+ 264 = 360^{⁰}}}

  • \longrightarrow {\mathrm {360^{⁰} = 360^{⁰}}}

Therefore ,

  • \longrightarrow {\mathrm {LHS = RHS}}

  • \longrightarrow {\mathrm {Hence\:Verified!}}

___________________________♡___________________________

Answered by CɛƖɛxtríα
75

Given:

  • The four angles of a quadrilateral are in the ratio- 3 : 5 : 9 : 13.

To do:

  • Specify the measure of angles of the quadrilateral.

Concept:

‎ ‎ ‎ ‎ ‎ ‎Here, we will be using the angle sum property of a quadrilateral to find the answer. This property can be defined as, “The sum of all the angles i.e, the sum of four angles of a quadrilateral equals 360°”.

Solution:

Let the four angles be-

  • \sf{\angle A=3z}
  • \sf{\angle B=5z}
  • \sf{\angle C=9z}
  • \sf{\angle D=13z}

As we know-

{\boxed{\bf{\pink{\angle A+\angle B+\angle C+\angle D=360\degree}}}}

\:

On substituting the values-

\:\:\:\:\:\:\:\longmapsto{\bf{3z+5z+9z+13z=360}}

\\\:\:\:\:\:\:\:\longmapsto{\bf{8z+22z=360}}

\\\:\:\:\:\:\:\:\longmapsto{\bf{30z=360}}

\\\:\:\:\:\:\:\:\longmapsto{\bf{z=\dfrac{36\cancel{0}}{3\cancel{0}}}}

\\\:\:\:\:\:\:\:\longmapsto{\bf{z=\dfrac{\cancel{36}}{\cancel{3}}}}

\\\:\:\:\:\:\:\:\longmapsto\underline{\bf{\orange{z=12}}}

\:

Since the value of z is 12, the value of-

  • \bf { \red{\angle A }\rightarrow3z=3(12)= \red{36 \degree}}
  • \bf { \purple{\angle B }\rightarrow5z=5(12)= \purple{60 \degree}}
  • \bf { \red{\angle C}\rightarrow9z=9(12)= \red{108 \degree}}
  • \bf { \purple{\angle D }\rightarrow13z=13(12)= \purple{156 \degree}}

Verification:

\rightarrowtail{\sf{\angle A+\angle B+\angle C+\angle D=360}}

Substituting the obtained measures-

\rightarrowtail{\sf{36+60+108+156=360}}

\rightarrowtail{\sf{96+108+156=360}}

\rightarrowtail{\sf{204+156=360}}

\rightarrowtail{\sf{360=360}}

\rightarrowtail{\sf{L.H.S=R.H.S}}

\\\therefore\underline{\sf{The\:measures\:of\:angle\:A, \:B,\:C,\:D\:are\:36\degree,\:60\degree,\:108\degree\:and\:156\degree,\: respectively.}}

____________________________________

Quadrilaterals:-

‎ ‎ ‎ ‎ ‎ ‎They are simple plane figures bounded by four line segments. Squares, rectangles, trapeziums, rhombi, parallelograms are some quadrilaterals. Now, let's learn about it!

Let's consider EFGH as a quadrilateral.

  • It has four edges - (EF, FG, GH, EH)
  • It has four vertices - (E, F, G, H)
  • ∠E + ∠F + ∠G + ∠H = 360°

The above listed properties are the three common properties of any quadrilateral.

____________________________________

Similar questions