Math, asked by jahanvi3851, 7 months ago

The angle of rotation of axes to remove xy term in the equation 3x^2 – 2√3xy +9y^2 = 10 is​

Answers

Answered by Swarup1998
4

Given: the equation 3x^{2}-2\sqrt{3}xy+9y^{2}=10

To find: the angle of rotation of axes to remove the xy term

Solution:

Let the angle of rotation be \theta

The the rotational formulae be:

  • x=X\:cos\theta-Y\:sin\theta
  • y=X\:sin\theta+Y\:cos\theta

Substituting them in the given equation, we get

\quad 3(X\:cos\theta-Y\:sin\theta)^{2}-2\sqrt{3}(X\:cos\theta-Y\:sin\theta)(X\:sin\theta+Y\:cos\theta)+9(X\:sin\theta+Y\:cos\theta)^{2}=10

In order to remove the xy equivalent XY terms, we must have:

\quad -6\:sin\theta\:cos\theta-2\sqrt{3}\:(cos^{2}\theta-sin^{2}\theta)+18\:sin\theta\:cos\theta=10

\Rightarrow 12\:sin\theta\:cos\theta=2\sqrt{3}\:(cos^{2}\theta-sin^{2}\theta)

\Rightarrow 6\:sin2\theta=2\sqrt{3}\:cos2\theta

\Rightarrow tan2\theta=\sqrt{3}

\Rightarrow tan2\theta=tan60^{\circ}

\Rightarrow 2\theta=60^{\circ}

\Rightarrow \theta=30^{\circ}

Answer: angle of rotation is 30^{\circ}

Similar questions