Math, asked by priyaninaithani302, 4 months ago

the angles of a quadrilateral are 2xdegree, 3x degree, 2(2x+1)and 5(x+3)

1=find x
2= find each angle

Answers

Answered by TheWonderWall
3

\large\sf\underline{✰\:Given}

\sf\:Four\:angles\:of\:a\: quadrilateral

  • \sf\:2x°

  • \sf\:3x°

  • \sf\:2(2x+1)°

  • \sf\:5(x+3)°

\large\sf\underline{✰\:To\:find}

  • The value of x

  • Each angle of quadrilateral

\large\sf\underline{✰\:Solution}

We know ,

\tt\red{Sum\:of\:Angles\: in \:a\: quadrilateral=360°}

So following that we get :-

\sf⇥\:2x+3x+2(2x+1)+5(x+3)=360°

\sf⇥\:2x+3x+4x+2+5x+15=360°

\sf⇥\:2x+3x+4x+5x=360°-2-15

\sf⇥\:14x=358°-15

\sf⇥\:14x=358°-15

\sf⇥\:14x=343°

\sf⇥\:x=\frac{343°}{14}

\sf⇥\:x=24.5°

\huge\fbox\red{⇝x = 24.5°}

Now substituting the value of x in four angles :

\sf⇨\:2x°

\sf⇨\:2 \times 24.5

\large\fbox\pink{⇨49°}

\sf\:⇨3x°

\sf⇨\:3 \times 24.5

\large\fbox\pink{⇨73.5°}

\sf⇨\:2(2x+1)°

\sf⇨\:4x+2

\sf⇨\:4 \times 24.5 +2

\sf⇨\:98+2

\large\fbox\pink{⇨100°}

\sf⇨\:5(x+3)°

\sf⇨\:5x+15

\sf⇨\:5 \times 24.5 +15

\sf⇨\:122.5+15

\large\fbox\pink{⇨137.5°}

\sf✰\:So\:the\:four\:angles\:of\:a\:quadrilateral\:are

\tt\pink{⇨49°}

\tt\pink{⇨73.5°}

\tt\pink{⇨100°}

\tt\pink{⇨137.5°}

\sf✰\:Sum\:of\:them\:are

\tt\red{⟹\:49°+73.5°+100°+137.5°}

\tt\red{⟹\:360°}

Hope it helps :)

Similar questions