Math, asked by ananya200516, 9 months ago

The angles of a quadrilateral are (5x), (3x + 10), (6x - 20° and (x + 25°). Find (i) the value of x
and (ii) the measure of each angle of the quadrilateral.​

Answers

Answered by sidsam0707
4

Answer:

X=23

Step-by-step explanation:

Wkt angles in a quad is 360°

So,

5x+3x+6x+x+10-20+25=360

15x+15=360

15x=345

X=23

So the measure of each angles is

5x=5*23=115°

(3x+10)=3*23+10=79°

6x-20=6*23-20=118°

X+25=23+25=48°

HOPE IT HELPS YOU

PLS MARK BRAINLIEST

Answered by sethrollins13
68

Given :

  • Angles of a quadrilateral are 5x , (3x+10) , (6x-20) and (x+25).

To Find :

  • Value of x.
  • Measure of each angle of quadrilateral.

Solution :

As we know that Sum of all the angles of a quadrialteral is 360°.So ,

{\longmapsto\tt5x+3x+10+6x-20+x+25=360\degree}

\longmapsto\tt{15x+15=360\degree}

\longmapsto\tt{15x=360\degree-15\degree}

\longmapsto\tt{15x=345}

\longmapsto\tt{x=\cancel\dfrac{345}{15}}

\longmapsto\tt\bold{x=23}

So , The value of x is 23..

Therefore :

\longmapsto\tt{1st\:Angle=5(23)}

\longmapsto\tt\bold{115\degree}

\longmapsto\tt{2nd\:Angle=3(23)+10}

\longmapsto\tt\bold{79\degree}

\longmapsto\tt{3rd\:Angle=6(23)-20}

\longmapsto\tt\bold{118\degree}

\longmapsto\tt{4th\:Angle=23+25}

\longmapsto\tt\bold{48\degree}

_______________________

VERIFICATION :

\longmapsto\tt{5(23)+3(23)+10+6(23)-20+23+25=360\degree}

\longmapsto\tt{115\degree+79\degree+118\degree+48\degree=360\degree}

\longmapsto\tt\bold{360\degree=360\degree}

HENCE VERIFIED

Similar questions
Math, 9 months ago