Math, asked by psk8373737382835536, 1 day ago

The angles of a quadrilateral are (5x), 5(x+2)°, (6x-20)° and 6(x+3)° respectively. Find (i) the value of x and (ii) each angle of the quadrilateral.​

Answers

Answered by bagkakali
3

Answer:

sum of the angles of a quadrilateral is 360°

so,

5x+5(x+2)+(6x-20)+6(x+3)=360

=> 5x+5x+10+6x-20+6x+18=360

=> 22x+8=360

=> 22x=360-8

=> 22x=352

=> x=352/22

=> x=176/11

=> x=16

I) value of x is 16

ii) 1st angle 5×16°=80°

2nd angle 5(16+2)°=5×18°=90°

3rd angle (6×16-20)°=(96-20)°=76°

4th angle 6(16+3)°=6×19°=114°

Answered by Anonymous
67

\large\underline{\underline{\maltese{\red{\pmb{\sf{\: Given :-}}}}}}

Angles of a quadrilateral are as follows :

  • ➻ ∠1 = (5x) °
  • ➻ ∠2 = 5(x+2)°
  • ➻ ∠3 = (6x-20)°
  • ➻ ∠4 = 6(x+3)°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\gray{\pmb{\sf{\: To  \: Find :-}}}}}}

  • ➻ Value of x = ?
  • ➻ Angles of Quadrilateral = ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\purple{\pmb{\sf{\:Solution  :-}}}}}}

As we know :

\large\blue{\bigstar}{\underline{\boxed{\red{\sf{Angle\:Sum\:property{\small_{(Quadrilateral)}} = 360°}}}}}

Value of x :

 \:  \:  \: {:\longmapsto{\sf{ \: (5x)° + 5(x+2)° + (6x-20)° + 6(x+3)° = 360°}}}

 \:  \:  \: {:\longmapsto{\sf{ \: (5x)° + 5x+10° + (6x-20)° + 6x+18° = 360°}}}

 \:  \:  \: {:\longmapsto{\sf{ \: 22x°  +  8  = 360°}}}

 \:  \:  \: {:\longmapsto{\sf{ \: 22x°    = 360° - 8}}}

 \:  \:  \: {:\longmapsto{\sf{ \: 22x°    = 352° }}}

 \:  \:  \: {:\longmapsto{\sf{ \: x   =  \cancel\frac{352}{22}  }}}

\large{\red{:\longmapsto}}{\underline{\overline{\boxed{\green{\sf{x = 16}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Angles of Quadrilateral :

\leadsto{\sf{1st  \: angle = (5x)°}}

\leadsto{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  5 \times 16°}}

{:\longmapsto{\green{\underline{\sf{80°}}}}}

\leadsto{\sf{2nd  \: angle = 5(x + 2)°}}

\leadsto{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  5(16 + 2)°}}

\leadsto{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  80 + 10°}}

{:\longmapsto{\green{\underline{\sf{90°}}}}}

\leadsto{\sf{3rd  \: angle = (6x  -  20)°}}

\leadsto{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (6 \times 16  -  20)°}}

\leadsto{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (96  -  20)°}}

{:\longmapsto{\green{\underline{\sf{76°}}}}}

\leadsto{\sf{4th  \: angle = 6(x   +   3)°}}

\leadsto{\sf{  \:  \:  \:  \:  \:  \:  \:  6(16   +   3)°}}

\leadsto{\sf{  \:  \:  \:  \:  \:  \:  \:  96  +   18°}}

{:\longmapsto{\green{\underline{\sf{114°}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Verification :

 {\twoheadrightarrow{\sf{ \: (5x)° + 5(x+2)° + (6x-20)° + 6(x+3)° = 360°}}}

 {\twoheadrightarrow{\sf{ \: (5 \times 16)° + 5(16+2)° + (6 \times 16-20)° + 6(16+3)° = 360°}}}

 {\twoheadrightarrow{\sf{ \: 80° + (80 + 10)° + (96-20)° + (96+18)° = 360°}}}</p><p>

 {\twoheadrightarrow{\sf{ \: 80° + 90° + 76° + 114° = 360°}}}</p><p>

 {\twoheadrightarrow{\sf{ \: 360° = 360°}}}</p><p>

 \:  \:  \:  \:  \:  \:  \:  \: \large{\red{\underline{\bf{LHS = RHS}}}}

Hence , Verified.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions