Math, asked by saloonichannel, 4 months ago

The angles of a quadrilateral are (6x-10), (4x+20), (3x + 25)° and (7x - 15)". Find the
measure of all the angles.

Answers

Answered by ImperialGladiator
4

Answer:

The angles are : 92°, 88°, 76°, and 104°

Explanation :

Given angles :

{(6x - 10)\degree, \: (4x + 20)\degree, \: (3x + 25)\degree, \: (7x - 15)\degree}

We know that,

The sum of all angles in a quadrilateral equals to 360°.

According to the question,

{ \implies (6x - 10)\degree +  \: (4x + 20)\degree +  \: (3x + 25)\degree +  \: (7x - 15)\degree = 360 \degree}

Solving for \pmb{x :}

{ \implies (6x - 10)\degree +  \: (4x + 20)\degree +  \: (3x + 25)\degree +  \: (7x - 15)\degree = 360 \degree} \\

\implies 6x - 10 + 4x + 20 + 3x + 25 + 7x - 15 = 360 \degree \\

\implies 6x + 4x + 3x + 7x - 10 + 20 + 25 - 15 =  360\degree\\

\implies 20x + 20 = 360 \degree\\

\implies 20x = (360 - 20) \degree\\

\implies 20x = 340 \degree\\

\implies x =  \frac{340}{20} \\

\implies x = 17  \degree \\

 \therefore \sf \: The \: value \: of  \: \boldsymbol{x} \: is \: 17 \degree

Hence, the angles are :

  • (6x - 10)\degree = \bf 6(17) - 10 = 92 \degree
  • (4x + 20)\degree = \bf 4(17) + 20 = 88 \degree
  • (3x + 25)\degree \bf = 3(17) + 25 = 76 \degree
  • (7x - 15)\degree = \bf 7(17) - 15 = 104 \degree

_____________________

Angle sum property :

  • The sum of all angles in a quadrilateral is 360° and this is known as the angle sum property of a quadrilateral.
Answered by Anonymous
20

 \large \frak \green{ \pmb{ \underline{Given :}}}

  • The angles of a quadrilateral are (6x-10), (4x+20), (3x + 25)° and (7x - 15).

 \large \frak \green{ \pmb{ \underline{To \:  find :}}}

  • Find the measure of all angles.

\large \frak \green{ \pmb{ \underline{Solution :}}}

 \sf{We  \: know \:  that,}

 \boxed{ \sf \pink{ \underline{Sum  \: of \:  all \:  angles \:  of  \: quadrilateral  \: is  \: 360⁰.}}}

\sf{  \therefore \: (6x-10) +  (4x+20) +  (3x + 25)  +  (7x - 15) =  {360}^{0} }</p><p>

 \sf{ \qquad : \implies \: 6x + 4x + 3x + 7x-10 +20 + 25  - 15 =  {360}^{0} }</p><p>

\sf{ \qquad : \implies \: 20x + 20 =  {360}^{0} }

\sf{ \qquad : \implies \: 20x = 360 - 20}

\sf{ \qquad : \implies \: 20x = 340}

\sf{ \qquad : \implies \: x =  \frac{340}{20} }

 \boxed{\sf \red{ \qquad : \:  \implies  \: x = 17}}

______________________________________

 \sf{1)  \: (6x - 10 )= 6 \times 17 - 10 =  \orange{ {92}^{0} }}

 \sf{2) \: (4x + 20) = 4 \times 17 + 20 =  \color{greenyellow}{ {88}^{0} }}

 \sf{3) \: (3x + 25) = 3 \times 17 + 25 =   \color{skyblue} {{76}^{0} }}

 \sf{4) \: (7x - 15) = 7 \times 17 - 15 =  \color{pink}{ {104}^{0} }}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

Similar questions