Math, asked by jui1725, 1 month ago

The angles of a quadrilateral are in A.P. and the greatest angle is double the least. Find angles of the quadrilateral in radian.​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: let \: the \: angles \: in \: a \: quadrilateral \: which \: are \: in \: A.P \: be \:  \\ (a - 3d),(a - d),(a + d),(a + 3d) \: respectively \:

so \: here \: \\ (a - 3d) \: is \: the \: least \: ie \: smallest \: angle \: and \: (a + 3d) \: is \: the \: greatest \: angle

so \: according \: to \: given \: condition \\ a + 3d = 2(a - 3d) \\ a + 3d = 2a - 6d \\ a = 9d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  (1) \\  so  \: \: now \:  \\ we \: know \: that \\ sum \: of \: all \: angles \: in \: any \: quadrilateral \: is \: 360 \: degree \\ thus \: then \\ a - 3d + a - d + a + d + a + 3d = 360 \\ 4a = 360 \\ ie \: a = 90

substituting \: value \: of \: a \: in \: (1) \\ we \: get \\ d = 10 \\  \\ now \: substitute \: values \: of \: a \: and \: d \: in \: (a - 3d),(a - d),(a + d),(a  + 3d) \\ we \: get \: required \: angles \: as \\ 60°,\: 80°,100°,120°,

so \: to \: convert \: degrees \: to \: angle \:  \\ we \: generally \: multiply \: degre \: throughout \: by \: \pi \div 180

thus \: then \\ 60° = 60 \times \pi \div 180 \\  = \pi \div 3 \\  \\ 80° = 80 \times \pi \div 180 \\  = 4\pi \div 9 \:  \\  \\ 100° = 100 \times \pi \div 180 \\  = 5\pi \div 9 \\  \\ 120° = 120 \times \pi \div 180 \\  = 2\pi \div 3

Similar questions