The angles of a quadrilateral are in AP whose common difference is 10°. Find the angles.
Answers
Answered by
8
Let the angle of quadrilateral be 'a'
sum of angles of quadrilateral be 360°
a+(a+d)+(a+2d)+(a+3d)=360°
4a+6d=300
4a=360-6d. (d=10°)
so,
4a=300
a=75°
Now angles of quadrilateral be
a=75°
a+d=85°
a+2d=95°
a+3d=105°
sum of angles of quadrilateral be 360°
a+(a+d)+(a+2d)+(a+3d)=360°
4a+6d=300
4a=360-6d. (d=10°)
so,
4a=300
a=75°
Now angles of quadrilateral be
a=75°
a+d=85°
a+2d=95°
a+3d=105°
Answered by
7
Let the angle ∠A = x
Then,
⇒ ∠B = x + 10°
⇒ ∠C = x + 20
⇒ ∠D = x + 30.
We know that Sum of angles of a quadrilateral = 360
⇒ x + x + 10 + x + 20 + x + 30 = 360
⇒ 4x + 60 = 360
⇒ 4x = 300
⇒ x = 75.
Hence:
⇒ ∠A = 75
⇒ ∠B = 85
⇒ ∠C = 95
⇒ ∠D = 105.
Therefore, angles in a quadrilateral are : 75,85,95 and 105.
Hope this helps!
Similar questions