Math, asked by mainaish, 1 year ago

the angles of a quadrilateral are in AP with common difference 20. find it angles.

Answers

Answered by Payalthequeen
3
Hey friend, ☺ here is ur answer ___________________________

plz see this attachment.
hope this helps u...
Attachments:

mainaish: thanx didi
Answered by InfiniteSoul
1

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • All angles of an quadrilateral are in AP
  • Common Diff. = 20

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • All angles of an AP = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

Since Sum of all angles of an quadrilateral is 360

⠀⠀⠀⠀

Therefore S = 360

⠀⠀⠀⠀

Since the no. of angles of quadrilateral is 4

⠀⠀⠀⠀

Therefore ; n = 4

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{S =\dfrac{n}{2} [ 2a + ( n - 1 ) d ] }}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 360 = \dfrac{4}{2}[ 2a + ( 4 - 1 ) 20 ]}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 360 = \dfrac{4}{2}[ 2a + 3 \times 20 ]}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 360 = 2 [ 2a + 60]}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{360}{2} = [ 2a + 60 ]}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 180 = [ 2a + 60 ]}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 180 - 60 = 2a}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ 2a = 120 }}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf :\implies\:{\bold{ a = \dfrac{120}{2} }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ a = 60}}

⠀⠀⠀⠀

  • Finding all angles

⠀⠀⠀⠀

Angle 1 = 60

⠀⠀⠀⠀

Angle 2 = Angle1 + 20= 60 + 20 = 80

⠀⠀⠀⠀

Angle 3 = Angle2 + 20 = 80 + 20 = 100

⠀⠀⠀⠀

Angle 4 = Angle3 + 20 = 100 + 20 = 120

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀

  • All angles of an quadrilateral are 60° , 80° , 100° , 120°
Similar questions