Math, asked by jeves42614, 4 months ago

The angles of a quadrilateral are in the 3:5:9:13 . Find all the angles, of a quadrilateral ​

Answers

Answered by Ladylaurel
5

To Find,

  • All angles of a quadrilateral

Solution,

Given that,

  • The angles of a quadrilateral are in the ratio of 3 : 5 : 9 : 13

Figure,

  • Refer the attachment.

As we know that,

Sum of all angles of quadrilateral = 360°, First we need to find out the value of x.

➧ 3x + 5x + 9x + 13x = 360

➧ 8x + 9x + 13x = 360

➧ 17x + 13x = 360

➧ 30x = 360

➧ x = 360 / 30

➧ x = 12

The value of x is 12.

The measure of all angles are :-

➧ 3x

= 3 × 12

= 36° ★

➧ 5x

= 5 × 12

= 60° ★

➧ 9x

= 9 × 12

= 108° ★

➧ 13x

= 13 × 12

= 156 ★

Required Answer :

The measure of all angles are :-

  • 36°
  • 60°
  • 108°
  • 156°
Attachments:
Answered by Anonymous
6

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Given :}}}}}}}

\sf{The  \:angles  \:in \: a \: quadrilateral \: are  \:in  \:the \: ratio \: 3:5:9:13}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{To\:Find :}}}}}}}

\sf{The  \:measure  \:of  \:the  \:angles}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Concept}}}}}}}

\sf{All  \:the  \:angles  \:in  \:a \: quadrilateral  \:add  \:upto  \:360^0}

\large{\red{\underline{\underline{\textsf{\maltese\:{\red{Solution}}}}}}}

\sf{Let \:the  \:angles  \:be  \:3x, 5x, 9x \: and  \:13x}

\sf{So,}

\sf{ 3x + 5x + 9x + 13x = 360^0}

\sf{30x = 360^0}

\sf{x = \dfrac {360^0}{30}}

\sf{x = 12^0}

\sf{So \:the \:angles \:are:}

\sf{3x = 3 \times  12 = 36^0}

\sf{5x = 5 \times  12 = 60^0}

\sf{9x = 9 \times 12 = 108^0}

\sf{13x = 13 \times 12 = 156^0}


MissAlison: Perfect!
Similar questions