Math, asked by varsiniprakash, 1 month ago

the angles of a quadrilateral are in the ratio 1:3:5:6 find its greatest angle​

Answers

Answered by dhrubajyoti17
3

Step-by-step explanation:

Answer in full explanation:-

_______________________

1x +3x + 5x + 6x = 360

15x = 360

x = 360/15

x = 24

6x = 24 × 6

= 144

Answered by VεnusVεronίcα
255

\large {\pmb{\mathfrak{☆ \: Given:}}}

The angles of a quadrilateral are in the ratio of 1:3:5:6.

 \\

\large {\pmb{\mathfrak{☆ \:  \: To \: find:}}}

We have to find the greatest angle in the quadrilateral.

 \\

\large {\pmb{\mathfrak{☆ \:  \: Solution:  }}}

We know that, sum of all the angles in a quadrilateral = 360°.

Let the unknown constant be x.

\sf :\implies x+3x+5x+6x=360\degree

\sf :\implies 15x=360\degree

\sf :\implies x= \dfrac{360\degree}{15}

\boxed{\pmb{\sf {\therefore  \: x=24\degree}}}

Now, substituting x = 24° in the ratios :

\sf :\implies \measuredangle1: \pmb{\sf x=24\degree}

\sf :\implies \measuredangle2:{\pmb{\sf{3x=3(24\degree)=72\degree}}}

\sf :\implies \measuredangle3:{\pmb{\sf{5x=5(24\degree)=120 \degree}}}

\sf :\implies \measuredangle4:{\pmb{\sf{6(24\degree)=144 \degree}}}

\boxed{\pmb{\sf{\therefore \: Greatest \: angle =144\degree}}}

 \\

\large {\pmb{\mathfrak{☆ \:  \: Verification:}}}

Let's verify whether the angles add upto 360° or not :

\sf :\implies x+3x+5x+6x=360\degree

\sf :\implies 24\degree+3(24\degree)+5(24\degree)+6(24\degree)=360

\sf :\implies 24\degree+72\degree+120 \degree + 144 \degree = 360 \degree

\sf:\implies 96\degree+264 \degree = 360 \degree

\sf :\implies  {360\degree=360\degree}

\boxed{\pmb{\sf{Hence, ~ verified!}}}

 \\

Similar questions