Math, asked by nayanshrana631, 5 months ago

the angles of a quadrilateral are in the ratio 2:3:5:8. find the angles​

Answers

Answered by vikaskumarrai7474
1

Answer:

2+3+5+8=18

then, sum if all angle of a quadrilateral is 360

then.360÷18= 20 .so all angles is 20.

Answered by Anonymous
3

\mathbb{\bold{\underline{ANSWER}}}

\fbox{\textsf{40$^{\textsf{o}}$}, \textsf{60}$^{\textsf{o}}$, \textsf{100}$^{\textsf{o}}$ \textsf{and} \textsf{160}$^{\textsf{o}}$}

\mathbb{\bold{\underline{EXPLANATION:}}}

\textsf{Ratio of angles of Quadrilateral = 2 : 3 : 5 : 8}

\colon \to \textbf{To find the angles of the quadrilateral:}

\textsf{Since, the ratio of angles is [2 : 3 : 5 : 8], so,}

\star \textsf{ Let the angles of the quadrilateral be '2x', '3x', '5x' and '8x'}

  \bullet \textbf{ According to Angle Sum Property of Quadrilateral, the sum of} \\ \textbf{all angles in a quadrilateral is 360$^{\textbf{o}}$}}

\to \textsf{2x + 3x + 5x + 8x = 360}

\to \textsf{18x = 360}

\to \textsf{x = $\frac{\textsf{360}}{\textsf{18}}$ = 20}

\therefore \textbf{\underline{x = 20}}

\textsf{If x = 20, then,}

\star \texttt{ 2x = 2 * 20 = $\bold{40}$ }

\star \texttt{ 3x = 3 * 20 = $\bold{60}$ }

\star \texttt{ 5x = 5 * 20 = $\bold{100}$ }

\star \texttt{ 8x = 8 * 20 = $\bold{160}$ }

\therefore \textbf{The angles of the quadrilateral are: 40$^{\textsf{o}}$, 60$^{\textsf{o}}$, 100$^{\textsf{o}}$ and 160$^{\textsf{o}}$}

\colon \to \textbf{To verify the Angle Sum Property of the quadrilateral:}

\textsf{According to the above property, the sum of all angles of the quadrilateral} \\ \textsf{should be 360$^{\textsf{o}}$}}

\star \texttt{ Angles of quadrilateral are 40$^{\texttt{o}}$, 60$^{\texttt{o}}$, 100$^{\texttt{o}}$ and 160$^{\texttt{o}}$}

\to \textsf{Sum of Angles $\to$ 40 + 60 + 100 + 160} \\ \textsf{= 360}

\therefore \textbf{Angle Sum Property of Quadrilaterals is VERIFIED!}

Similar questions