Math, asked by greeshma729, 6 months ago

The angles of a quadrilateral are in the ratio
2:3:7:6 . Find the measure of each angle of the
quadrilaral.​

Answers

Answered by ADITYA05082007
3

Answer:

40° , 60° , 140° , 120°

Step-by-step explanation:

let the angle be x

so, 2:3:7:6 = 2x:3x:7x:6x

total angle of a quadrilateral = 360°

so, angle 1 + angle 2 + angle 3 + angle 4 = 360°

therefore, 2x + 3x + 7x + 6x = 360°

18x = 360°

x = 360÷18

x = 20°

Now, put the value of x :- ( Answers)

2x = 2×20 = 40°

3x = 3×20 = 60°

7x = 7×20 = 140°

6x = 6×20 = 120°

For doing cross check add all the angles :-

40°+60°+140°+120°

I hope it helped you. THANKYOU

Answered by Anonymous
121

Given:-

  • Ratio of the angles = 2:3:7:6

To Find:-

  • The measures of each Quadrilateral.

Solution:-

  • Let the each angle of the quadrilateral be 2x,3x,7x and 6x.

We know that,

▪️\sf{Sum\:of\:all\:angles\:of\:quadrilateral=360 °}

Therefore,

\pink{\implies\:\:} \rm{2x+3x+7x+6x=360 °}

\pink{\implies\:\:} \rm{18x=360 °}

\pink{\implies\:\:} \rm{x= \dfrac{360}{18} }

\pink{\implies\:\:} \rm{x= 20 °}

Now,

\red{\implies\:\:} \rm{2x= 2\times 20 °=48 °}

\red{\implies\:\:} \rm{3x= 3\times 20 °=72 °}

\red{\implies\:\:} \rm{7x= 7\times 20 °=140 °}

\red{\implies\:\:} \rm{6x= 6\times 20 °=120 °}

\boxed{\underline{\purple{\rm \therefore Required\:angles\:are\:48 °,72 °,140 °,120 °}}}

______________________________________

Similar questions