Math, asked by 4649, 2 days ago

The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the triangle.​

Answers

Answered by TheAestheticBoy
27

Question :-

  • The Angles of Quadrilateral are in the ratio 3 : 5 : 9 : 13 . Find all the Angles of the Quadrilateral .

Answer :-

  • The Angles of Quadrilateral are 36° , 60° , 108° and 156° .

 \rule{180pt}{2pt}

Given :-

  • Ratio of Angles of Quadrilateral are 3 : 5 : 9 : 13

To Find :-

  • Angles of the Quadrilateral .

Solution :-

  • Here, Ratio of Angles of Quadrilateral are given 3 : 5 : 9 : 13 . And, we have to find Angles of Quadrilateral .

Theorem :-

  • By Angle Sum Property, The sum of the Angles of a Quadrilateral is 360°

According to the question :-

 \Longrightarrow \:  \:  \sf{3x  \: + \:  5x  \: + \:  9x \:  +  \: 13x  \: =  \: 360} \\

 \Longrightarrow \: \:  \sf{30x \:  = \:  360}

 \Longrightarrow \:  \:  \sf{x \:  =  \:  \frac{360}{30} } \\

 \Longrightarrow \:  \:  \sf{x \:  =  \: 12 \degree}

By finding the Angles :-

 \Longrightarrow \:  \:  \sf{3x = 3 \times 12 = 36 \degree}

 \Longrightarrow \:  \:  \sf{5x = 5 \times 12 = 60\degree}

 \Longrightarrow \:  \:  \sf{9x = 9 \times 12 = 108\degree}

 \Longrightarrow \:  \:  \sf{13x = 13 \times 12 = 156\degree}

Hence :-

  • Angles of Quadrilateral = 36° , 60° , 108° and 156° .

 \rule{180pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Information \:  \:  \dag}}}}  \\  \\  \\   \footnotesize \bigstar \:  \sf{Sum  \: of  \: Angles  \: of  \: Triangle = 180 \degree} \\  \\  \\ \footnotesize \bigstar \:  \sf{Sum \: of \: Angles \: of \: Pentagon = 540 \degree}  \\  \\  \\  \footnotesize \bigstar \:  \sf{Sum \: of \: Angles \: of \: Hexagon = 720 \degree} \\  \\  \\  \footnotesize \bigstar \:  \sf{Sum \: of \: Angles \: of \: Heptagon = 900 \degree} \\  \\  \\ \footnotesize \bigstar \:  \sf{Sum \: of \: Angles \: of \: Octagon = 1080 \degree}\end{array}}\end{gathered}\end{gathered}

Similar questions