Math, asked by 444555aryanchauhan, 8 months ago

The angles of a quadrilateral are in the ratio of 1:2:3:4. What is the measure
of the four angles?

Answers

Answered by nhorsanglama
2

Answer:

Hope it will help

Step-by-step explanation:

Let, angles be x

1x+2x+3x+4x = 360 (being quadrilateral)

10x = 360

x = 360/10

x = 36

now,

1x = 1×36 = 36

2x = 2x36 = 72

3x = 3×36 = 108

4x = 4×36 = 144

Answered by sethrollins13
6

✯✯ QUESTION ✯✯

The angles of a quadrilateral are in the ratio of 1:2:3:4. What is the measure of the four angles?

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt{Let\:1st\:Angle\:be=1x}

\longmapsto\tt{Let\:2nd\:Angle\:be=2x}

\longmapsto\tt{Let\:3rd\:Angle\:be=3x}

\longmapsto\tt{Let\:4th\:Angle\:be=4x}

Sum of angles of a quadrilateral is 360°....

A.T.Q : -

\longmapsto\tt{1x+2x+3x+4x=360\degree}

\longmapsto\tt{10x=360\degree}

\longmapsto\tt{x=\cancel\dfrac{360}{10}}

\red\longmapsto\:\large\underline{\boxed{\bf\green{x}\orange{=}\purple{36}}}

Now ,

\longmapsto\tt{1st\:Angle=1(36)}

\longmapsto\tt{36\degree}

\longmapsto\tt{2nd\:Angle=2(36)}

\longmapsto\tt{72\degree}

\longmapsto\tt{3rd\:Angle=3(36)}

\longmapsto\tt{108\degree}

\longmapsto\tt{4th\:Angle=4(36)}

\longmapsto\tt{144\degree}

_______________________

VERIFICATION : -

\longmapsto\tt{36\degree+72\degree+108\degree+144\degree=360\degree}

\longmapsto\tt{360\degree=360\degree}

\pink\longmapsto\:\large\underline{\boxed{\bf\orange{L.H.S}\blue{=}\red{R.H.S}}}

HENCE VERIFIED

Similar questions