Math, asked by ghoshsoumili70, 4 months ago

The angles of a triangle are in the ratio 1:2:3. The measure of the
largest angle is​

Answers

Answered by Anonymous
17

Given:

  • Ratio = 1:2:3
  • Angles of Triangles = 180°

To Find

  • All angles Measurements?
  • The Measure of Largest Angle?

Solution:

We Know that,

Sum of all the angles of the Triangle is 180°.

 \\ \circ \: {\boxed{\tt\large\gray{ Total \ Sum \ of \ Angles_{( \Delta )} = 180° }}} \\

Let the angle be x

According to Question,

As we know sum of Triangles,

 \colon\implies{\tt{ x + 2x+3x = 180° }} \\ \\ \\ \colon\implies{\tt{ 6x = 180° }} \\ \\ \\ \colon\implies{\tt{ x = \dfrac{ \cancel{180} }{ \cancel{6} } }} \\ \\ \\ \colon\implies{\boxed{\tt\red{ x = 30° }}} \\

After Putting values,

 \colon{\boxed{\boxed{\tt\green{ x  = 30° }}}} \\

 \colon{\boxed{\boxed{\tt\blue{ 2x = 2 \times 30 = 60° }}}} \\

 \colon{\boxed{\boxed{\tt\pink{ 3x = 3 \times 30 = 90° }}}} \\

Hence,

  • The measure of the Largest Angle is 90° .
Answered by Anonymous
227

Answer:

Given

  •  {\mapsto\textsf{Angles of a triangle are in the ratio - 1:2:3}}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find

  •  \mapsto \textsf{Measurement of all angles }
  • \mapsto \textsf{The largest angle of Triangle }

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution

✒ We know that the sum of all angles of the triangle is 180⁰.

✒ Let the angles be 'x'

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

So,

Angles

  • \leadsto \tt \purple{1 × x} =  \pink{1x}
  • \leadsto \tt \purple{2 × x }= \pink {2 x}
  • \leadsto \tt \purple{ 3 × x }= \pink {3x}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

\implies\sf \pink{1x + 2x + 3x }= \purple {180 \degree} \\  \\  \implies \sf \pink{6x} =  \purple{180 \degree} \\  \\  \implies \sf \pink{x }=    \purple{\cancel\dfrac{180}{6} } \\  \\  \implies \sf \pink{x }=  \purple{30 \degree} \\  \\   \Large{\underline{\boxed{\frak \pink{x}=   \purple{30\degree}}}}

The Value of x is 30⁰.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Angles

✒ After putting value of x.

  • \leadsto  \tt  \purple{1  \times  30\degree }=  \pink{30\degree}
  • \leadsto  \tt  \purple{2  \times  30 \degree }=  \pink{60\degree}
  • \leadsto  \tt  \purple{3  \times  30 \degree }=  \pink{90\degree}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore

The angles are 30⁰,60⁰ and 90⁰.

And the largest angle is 90⁰.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Verification Also :-

The sum of all angles of a triangle is 180⁰

So,

 \implies\sf \pink{30 \degree + 60 \degree + 90 \degree} =  \purple{180 \degree} \\  \\   \implies\sf \pink{180 \degree} = \purple{180 \degree} \\  \\  \implies\large{\underline{\boxed {\sf \pink{LHS} =  \purple{RHS }}}}

Hence Verified

Similar questions