Math, asked by okezieelizabeth9, 1 month ago

the angles of a triangle are in the ratio 2:3:4 what is the size of its smallest angles ?​

Answers

Answered by riyabharti149
0

Answer:

40 degrees is the required answer

Answered by Anonymous
66

Given :-

  • The angles of a triangle are in the ratio of 2 : 3 : 4.

To Find :-

  • What is the smallest angle of a triangle.

Solution :-

Let,

\mapsto \sf\bold{First\: angle =\: 2x}

\mapsto \sf\bold{Second\: angle =\: 3x}

\mapsto \sf \bold{Third\: angle =\: 4x}

As we know that,

\clubsuit\: \: \sf\boxed{\bold{\pink{Sum\: of\: all\: angle\: in\: triangle =\: 180^{\circ}}}}\\

According to the question by using the formula we get,

\implies \sf 2x + 3x + 4x =\: 180^{\circ}

\implies \sf 5x + 4x =\: 180^{\circ}

\implies \sf 9x =\: 180^{\circ}

\implies \sf x =\: \dfrac{\cancel{180^{\circ}}}{\cancel{9}}

\implies \sf x =\: \dfrac{20^{\circ}}{1}

\implies \sf\bold{\purple{x =\: 20^{\circ}}}

Hence, the required angle of a triangle are :

\mapsto First angle of a triangle :

\longrightarrow \sf 2x

\longrightarrow \sf 2(20^{\circ})

\longrightarrow \sf 2 \times 20^{\circ}

\longrightarrow \sf\bold{\red{40^{\circ}}}

\mapsto Second angle of a triangle :

\longrightarrow \sf 3x

\longrightarrow \sf 3(20^{\circ})

\longrightarrow \sf 3 \times 20^{\circ}

\longrightarrow \sf\bold{\red{60^{\circ}}}

\mapsto Third angle of a triangle :

\longrightarrow \sf 4x

\longrightarrow \sf 4(20^{\circ})

\longrightarrow \sf 4 \times 20^{\circ}

\longrightarrow \sf\bold{\red{80^{\circ}}}

Hence,

\bigstar\: \: \sf\bold{\pink{First\: angle =\: 40^{\circ}}}\\

\bigstar\: \: \sf\bold{\pink{Second\: angle =\: 60^{\circ}}}\\

\bigstar\: \: \sf\bold{\pink{Third\: angle =\: 80^{\circ}}}\\

\therefore The angle of a triangle is 40°, 60° and 80° respectively.

\therefore The smallest angle of a triangle is 40°.

\\

VERIFICATION :-

\implies \sf 2x + 3x + 4x =\: 180^{\circ}

By putting x = 20° we get,

\implies \sf 2(20^{\circ}) + 3(20^{\circ}) + 4(20^{\circ}) =\: 180^{\circ}

\implies \sf 40^{\circ} + 60^{\circ} + 80^{\circ} =\: 180^{\circ}

\implies \sf\bold{\green{ 180^{\circ} =\: 180^{\circ}}}

Hence, Verified.

Similar questions