Math, asked by Masooma82, 2 months ago

The angles of a triangle are in the ratio 3:5:7.
Find the measure of each angle of thetriangle.

(Hint: We know that the sum of the angles of a triangle is 180°.]

Answers

Answered by unknown8270
8

Answer:

36°,60°,84°

Step-by-step explanation:

please mark it brainliest

Answered by Anonymous
8

Correct Question-:

  • The angles of a triangle are in the ratio 3:5:7. Find the measure of each angle of the triangle.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ The\:measure \:of\:the\:angles \:of\:triangles\:is\:36^{⁰},\:60^{⁰}\:and\:84^{⁰}}}}}}

\dag{\underline {\sf{\large { Explanation \: -: }}}}\\\\

  •  \frak{Given \:\: -:} \begin{cases} \sf{ The \:angles\: of \:a \:triangle\: are\: in \:the\: ratio\: 3:5:7\:.  }\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{ The\:measure \:of\:three\:angles\: of \:a \:triangle\: . }\end{cases} \\\\

\dag{\underline {\sf{\large { As\:we\:know\:that\: -: }}}}\\\\

 \frak{Let's \:Assume \: -:} \begin{cases} \sf{The\:measure\:of\:three \:angles\:of\:Triangle \:\:be\:= \frak{3x\:,5x\:and\;7x}} \end{cases} \\\\

\star {\bigstar {\sf{\large { Then\: -: }}}}\\\\

  •  \frak{Measure \:of\:Angles\: -:} \begin{cases} \sf{Angle_{1}= 3x}& \\\\ \sf{Angle _{2}= 5x}& \\\\ \sf{ Angle _{3}=7x}\end{cases} \\\\

  • \underline{\boxed{\star{\sf{\blue{ The\:sum\:of\:the\:angles \:of\:triangles\:is\:180^{⁰}}}}}}\\\\

  • \sf{Or,}\\\\

  • \underline{\boxed{\star{\sf{\blue{ Angle _{1}+Angle_{2}+Angle_{3}=\:180^{⁰}}}}}}\\\\

  •  \frak{Here\: -:} \begin{cases} \sf{Angle_{1}= 3x}& \\\\ \sf{Angle _{2}= 5x}& \\\\ \sf{ Angle _{3}=7x}\end{cases} \\\\

  • \star {\bigstar {\sf{\large { Now\: -: }}}}\\\\

  • \longrightarrow{\sf{\large {3x+5x+7x=\:180^{⁰}}}}\\\\

  • \longrightarrow{\sf{\large {8x+7x=\:180^{⁰}}}}\\\\

  • \longrightarrow{\sf{\large {15x=\:180^{⁰}}}}\\\\

  • \longrightarrow{\sf{\large {x=\:\dfrac{180}{15}}}}\\\\

  • \longrightarrow{\sf{\large {x=\:12}}}\\\\

\star {\bigstar {\sf{\large { Therefore \: -: }}}}\\\\

  • \boxed{\sf{\large {x=\:12}}}\\\\

\star {\bigstar {\sf{\large { Then\: -: }}}}\\\\

  •  \frak{Putting \:x=12 -:} \begin{cases} \sf{Angle_{1}= 3x=3 \times 12 = 36^{⁰}}& \\\\ \sf{Angle _{2}= 5x=12 \times 5 = 60^{⁰}}& \\\\ \sf{ Angle _{3}=7x= 7 \times 12 = 84^{⁰}}\end{cases} \\\\

\star {\bigstar {\sf{\large { Hence \: -: }}}}\\\\

  • \underline{\boxed{\star{\sf{\blue{ The\:measure \:of\:the\:angles \:of\:triangles\:is\:36^{⁰},\:60^{⁰}\:and\:84^{⁰}}}}}}

________________________________________

\dag{\underline {\sf{\huge { ♡Verification-:  }}}}\\\\

  • \dag{\underline {\sf{\large { As\:we\:know\:that\: -: }}}}\\\\

  • \underline{\boxed{\star{\sf{\blue{ Angle _{1}+Angle_{2}+Angle_{3}=\:180^{⁰}}}}}}\\\\

  •  \frak{Here\: -:} \begin{cases} \sf{Angle_{1}= 36^{⁰}}& \\\\ \sf{Angle _{2}= 60^{⁰}}& \\\\ \sf{ Angle _{3} = 84^{⁰}}\end{cases} \\\\

  • \star {\bigstar {\sf{\large { Now\: , Putting\:known\:values\:-: }}}}\\\\
  • \longrightarrow{\sf{\large {36+60+84=\:180^{⁰}}}}\\\\

  • \longrightarrow{\sf{\large {36+144=\:180^{⁰}}}}\\\\

  • \longrightarrow{\sf{\large {180^{⁰}=\:180^{⁰}}}}\\\\

\star {\bigstar {\sf{\large { Therefore \: -: }}}}\\\\

  • \longrightarrow{\sf{\large {LHS=RHS}}}\\\\

  • \longrightarrow{\sf{\large {Hence,\:Verified}}}\\\\

_________________________♡______________________

Similar questions