Math, asked by archanaate97, 1 month ago

The angles of a triangle are in the ratio 5 : 3 : 7 then anwer the following
2 . here the measure of greatest angle is

90 degree
36 degree
84 degree
86 degree



Answers

Answered by ShírIey
87

We've to find out the Greatest angles of the given triangle. First We'll find all three angles of the triangle. & to find angles we'll use Angle sum property of triangle i.e (∠A + ∠B + ∠C = 180°).

So Let's Consider the angles of a triangle be 5x, 3x and 7x respectively.

\bf{\dag}\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

  • Sum of all angles of a triangle is 180°.

:\implies\sf \angle\:A + \angle\:B + \angle\:C = 180^\circ\\ \\

\sf Here \begin{cases} & \sf{\angle\:A = \bf{5x}} \\ & \sf{\angle\:B = \bf{3x}} \\ &\sf{\angle\:C = \bf{7x}}\end{cases}\\\\

\bf{\dag}\;{\underline{\frak{ Substituting\:values,}}}\\ \\

:\implies\sf \angle\:A + \angle\:B + \angle\:C = 180^\circ\\\\\\:\implies\sf 5x + 3x + 7x = 180^{\circ}\\\\\\:\implies\sf 15x = 180^\circ\\\\\\:\implies\sf  x = \cancel\dfrac{180^\circ}{15}\\\\\\:\implies\underline{\boxed{\pmb{\frak{\pink{x = 12}}}}}\;\bigstar\\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Therefore, Angles of ∆ are :

  • 5x = 5(12) = 60°
  • 3x = 3(12) = 36°
  • 7x = 7(12) = 84°

\therefore\:{\underline{\sf{Measure\: of\; Greatest\: angle\:of\:a\:\triangle\:is\:{\sf{\pmb{Option\;c)\;84^\circ}.}}}}}

Answered by Anonymous
118

Answer:

Given :-

  • The angles of a triangle are in the ratio of 5 : 3 : 7.

To Find :-

  • What is the greatest angles of a triangle.

Solution :-

Let,

\mapsto \bf First\: Angle_{(Triangle)} =\: 5a

\mapsto \bf Second\: Angle_{(Triangle)} =\: 3a

\mapsto \bf Third\: Angle_{(Triangle)} =\: 7a

As we know that :

\footnotesize\bigstar \: \: \sf\boxed{\bold{\pink{Sum\: Of\: All\: Angles\: Of\: Triangle =\: 180^{\circ}}}}\: \: \bigstar\\

According to the question by using the formula we get,

\footnotesize \implies \bf First\: Angle + Second\: Angle + Third\: Angle =\: 180^{\circ}

\implies \sf 5a + 3a + 7a =\: 180^{\circ}

\implies \sf 8a + 7a =\: 180^{\circ}

\implies \sf 15a =\: 180^{\circ}

\implies \sf a =\: \dfrac{\cancel{180^{\circ}}}{\cancel{15}}

\implies \sf a =\: \dfrac{12^{\circ}}{1}

\implies \sf\bold{\purple{a =\: 12^{\circ}}}

Hence, the required measure of angles of a triangle are :

First Angle Of Triangle :

\longrightarrow \sf First\:  Angle_{(Triangle)} =\: 5a

\longrightarrow \sf First\: Angle_{(Triangle)} =\: 5 \times 12^{\circ}

\longrightarrow \sf\bold{\red{First\: Angle_{(Triangle)} =\: 60^{\circ}}}

Second Angle Of Triangle :

\longrightarrow \sf Second\: Angle_{(Triangle)} =\: 3a

\longrightarrow \sf Second\: Angle_{(Triangle)} =\: 3 \times 12^{\circ}

\longrightarrow \sf\bold{\red{Second\: Angle_{(Triangle)} =\: 36^{\circ}}}

Third Angle Of Triangle :

\longrightarrow \sf Third\: Angle_{(Triangle)} =\: 7a

\longrightarrow \sf Third\: Angle_{(Triangle)} =\: 7 \times 12^{\circ}

\longrightarrow \sf\bold{\red{Third\: Angle_{(Triangle)} =\: 84^{\circ}}}

{\small{\bold{\underline{\therefore\: The\: greatest\: angles\: of\: a\: triangle\: is\: 84^{\circ}\: .}}}}

Hence, the correct options is option no (c) 84°.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

VERIFICATION

As we know that :

\footnotesize\clubsuit\: \: \sf\boxed{\bold{\pink{Sum\: Of\: All\: Angles\: Of\: Triangle =\: 180^{\circ}}}}\: \: \clubsuit\\

\leadsto \sf 5a + 3a + 7a =\: 180^{\circ}

By putting a = 12° we get,

\leadsto \sf 5(12^{\circ}) + 3(12^{\circ}) + 7(12^{\circ}) =\: 180^{\circ}

\leadsto \sf 60^{\circ} + 36^{\circ} + 84^{\circ} =\: 180^{\circ}

\leadsto \sf\bold{\green{180^{\circ} =\: 180^{\circ}}}

Hence, Verified.

Similar questions