The angles of a triangle are (m+10)⁰,(m+40)⁰ and (2m-30)⁰. What is value of m *
40
50
60
70
Answers
Answer:
Analysis→
Here we're given that the angles of a triangle are (m+10°),(m+40°) and (2m-30)°. And we've to find the value of m. And according to Angle sum property of a triangle, sum of all the three interior angles is equal to 180°.
Given→
- Angle 1=(m+10°)
- Angle 2=(m+40°)
- Angle 3=(2m-30°)
To Find→
The value of m.
Answer→
☞ Hence the value of m is 40° which is the required answer.
Know More→
Angle 1:- (m+10°)=(40°+10°)=50°
Angle 2:- (m+40°)=
(40°+40°)=80°
Angel 3:- (2m-30°)=2(40°)-30° =80°-30°=50°
Sum of all angles:- 50°+50°+80°=100°+80°=180°
HOPE IT HELPS.
Step-by-step explanation:
Here we're given that the angles of a triangle are (m+10°),(m+40°) and (2m-30)°. And we've to find the value of m. And according to Angle sum property of a triangle, sum of all the three interior angles is equal to 180°.
\begin{gathered}\:\hookrightarrow\rm Angle\:1=(m+10°) \\ \hookrightarrow\rm Angle\:2=(m+40°) \\ \:\:\hookrightarrow\rm Angle\:3=(2m-30°)\end{gathered}
↪Angle1=(m+10°)
↪Angle2=(m+40°)
↪Angle3=(2m−30°)
Given→
Angle 1=(m+10°)
Angle 2=(m+40°)
Angle 3=(2m-30°)
To Find→
The value of m.
Answer→
\large{\underline{\boxed{\leadsto{\rm{Angle(1+2+3)=180°}}}}}
⇝Angle(1+2+3)=180°
\begin{gathered}\implies\rm(m+10°)+(m+40°) \\ \rm+(2m-30°)=180°\end{gathered}
⟹(m+10°)+(m+40°)
+(2m−30°)=180°
\implies\rm{4m+50°-30°=180°}⟹4m+50°−30°=180°
\implies\rm{4m+20°=180°}⟹4m+20°=180°
\implies\rm{4m=160°}⟹4m=160°
\implies\rm{m=\dfrac{160°}{4}}⟹m=
4
160°
\implies\rm{m=\dfrac{\cancel{160°}}{\cancel{4}}}⟹m=
4
160°
\implies\rm{m=40°}⟹m=40°
{\boxed{\boxed{\implies{\bf{m=40°\checkmark}}}}}
⟹m=40°✓
☞ Hence the value of m is 40° which is the required answer.
Know More→
Angle 1:- (m+10°)=(40°+10°)=50° \large\checkmark✓
Angle 2:- (m+40°)=
(40°+40°)=80° \large\checkmark✓
Angel 3:- (2m-30°)=2(40°)-30° =80°-30°=50° \large\checkmark✓
Sum of all angles:- 50°+50°+80°=100°+80°=180° \large\checkmark✓
HOPE IT HELPS.