Math, asked by Somiyaprasad5020, 11 months ago

The angles of a triangle are ratio 4:2:3.Express the angle of triangle in degree measure

Answers

Answered by devthesoldier
1

Answer:

let the angles be 4x+2x+3x

4x+2x+3x=180°(angle sum property

of triangle)

9x=180

x=180/9

x=20

Therefore the angles are:

4x=4*20=80°, 2x=2*20=40°, 3x=3*20=60°

pl follow me☺️

Answered by Tomboyish44
1

Question: The angles of a traingle are in the ratio 4:2:3. Express the angles of the triangle in the measure of Degree's.

Answer:

Given that, Ratios of the angle are 4:2:3

Let us take the measure as 'x'

\longrightarrow ∠A = 4x

\longrightarrow ∠B = 2x

\longrightarrow ∠C = 3x

We know that in a triangle, the sum of all three angles are 180°

⇒ ∠A + ∠B + ∠C = 180°

⇒ 4x + 2x + 3x = 180°

⇒ 9x = 180°

\Longrightarrow \sf x = \dfrac{180}{9}

\large\boxed{\sf x = 20^{\circ}}

Now, we substitute the value of 'x' in 4x, 2x, 3x.

\boxed{\begin{minipage}{5 cm}\sf FINDING \angle A\\ \\\sf \longrightarrow 4x\\ \\\sf \longrightarrow 4 \times 20^{\circ}\\ \\\sf \longrightarrow 80^{\circ}\\ \\\therefore \angle A = 80^{\circ}\\\end{minipage}}

\boxed{\begin{minipage}{5 cm}\sf FINDING \angle B\\ \\ \longrightarrow \sf 2x\\ \\\sf \longrightarrow 2 \times 20^{\circ}\\ \\\sf \longrightarrow 40^{\circ}\\ \\\therefore \angle B = 40^{\circ}\\\end{minipage}}

\boxed{\begin{minipage}{5 cm}\sf FINDING \angle C\\ \\ \longrightarrow \sf 3x\\ \\\sf \longrightarrow 3 \times 20^{\circ}\\ \\\sf \longrightarrow 60^{\circ}\\ \\\therefore \angle C = 60^{\circ}\\\end{minipage}}

Answers:

∠A → 80°

∠B → 40°

∠C → 60°

Attachments:
Similar questions