Math, asked by hsksbsba, 4 months ago

the angles of a triangle are (x-35⁰), (x-25⁰) and (x/2-10⁰), then find x.​

Answers

Answered by Anonymous
12

Given:-

  • ∠A = (x - 35)°
  • ∠B = (x - 25)°
  • ∠C = (x/2 - 10)°

To find:-

  • Value of x.

Solution:-

We Know that ,

  • The sum of the interior angles of a triangle is 180°.

Here,

  • ∠A + ∠B + ∠C = 180°

According to the question,

→ (x - 35)° + ( x - 25 )° + (x/2 - 10)° = 180°

→ x - 35 + x - 25 + x/2 -10 = 180°

→ 2x + x/2 - 70 = 180°

→ (4x + x )/2 = 180° + 70°

→ 5x/2 = 250°

→ 5x = 250° × 2

→ 5x = 500°

x = 100°

Hence,

  • ∠A = ( x - 35 )° = 100 - 35 = 65°
  • ∠B = ( x - 25 )° = - 25 = 75°
  • ∠C = ( x/2 - 10 )° = 50 - 10 = 40°
Answered by Anonymous
219

Answer:

 \Large \star \:  \bf { \pmb{Given:}}

  •    \leadsto\sf\angle \: {A }= (x - 35) \degree
  •  \leadsto  \sf\angle \: {B}= (x - 25) \degree
  •  \sf{ \angle{C}  =  \big( \dfrac{x}{2}  - 10 \big) \degree}

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \Large \star \:  \bf { \pmb{To \: find: }}

  •   \leadsto\sf{Value \:  of   \: x.}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \Large \star \:  \bf { \pmb{Solution:}}

We Know that ,The sum of the all angles of a triangle is 180°.

:  \implies\bf \pink{\angle \: {A} +  \angle \: {B} +  \angle \: {C}} = \purple {180 \degree}

According to the question,

 {:  \implies \bf \pink{ (x - 35)° + ( x - 25 )° + \big(  \dfrac{x}{2} - 10 \big)°} = \purple {180°}}

 { : \implies  \bf \pink{(x + x +  \dfrac{x}{2} )   +  {\big(}( - 35 \degree)  ( - 25 \degree) (+ 10 \degree) \big) }= \purple{ 180 \degree}}

{ :  \implies  \bf \pink {\big( \dfrac{(x \times 2) +( x \times 2 )+ (x)}{2}  \big)   +  ( - 75 \degree) }  =  \purple{ 180 \degree}}

{ : \implies  \bf \pink{ \big(\dfrac{2x + 2x + x}{2} \big)   +  ( - 75 \degree)}=   \purple{180 \degree}}

 :  \implies  \bf \pink{\dfrac{5x}{2}   +   ( - 70 \degree) } =  \purple{180 \degree}

 :  \implies  \bf \pink{\dfrac{5x}{2}} =  \purple{180 \degree  +  70 \degree }

 :  \implies  \bf \pink{\dfrac{5x}{2}} =  \purple{250 \degree }

 :  \implies \bf  \pink{x} =  \purple {\dfrac{250 \times 2}{5}}

  : \implies \bf \pink{ x }= \purple  {\dfrac{500}{5} }

  \:  \:  \:  \:  \:  \:   \large \underline{\boxed{\red{\frak {\pmb{x =100 \degree}}}}}

Therefore.

  • { \leadsto \sf{ \angle \: A = ( x - 35 ) \degree = 100 - 35 = 65 \degree}}
  •  \leadsto \sf \angle \: B = ( x - 25) \degree =  - 25 = 75 \degree
  • { \leadsto \sf \angle \: C = ( x/2 - 10 ) \degree = 50 - 10 = 40 \degree}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \Large \star \:\bf{ \pmb{Verification:}}

 {:  \implies \bf \pink{ (x - 35)° + ( x - 25 )° + \big(  \dfrac{x}{2} - 10 \big)°} = \purple {180°}}

Substuting the value of x=100.

 {:  \implies \bf \pink{ (100- 35)° + ( 100 - 25 )° + \big(  \dfrac{100}{2} - 10 \big)°} = \purple {180°}}

 {:  \implies \bf \pink{ (65)° + (75 )° + \big(  \dfrac{100 - 20}{2}  \big)°} = \purple {180°}}

 {:  \implies \bf \pink{ (65)° + (75 )° + \big(  \cancel \dfrac{80}{2}  \big)°} = \purple {180°}}

 {:  \implies \bf \pink{ (65)° + (75 )° +{(40})°} = \purple {180°}}

 :   \implies\bf \pink{180°} = \purple {180°}

 \:  \:  \:  \:  \:  \:   \large \underline{\boxed{\bf \red{LHS = RHS}}} \\ \:  \:  \:  \:  \:   \sf \star \:  \underline{Hence  \: Verified } \: \star

Similar questions