Math, asked by yeshapradeep200, 1 year ago

The angles of a triangle are (x-40),(x-30) and (2x+10) find the angles

Answers

Answered by Sauron
5

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The angles of the Triangle are 20°, 30° and 130°.

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

Given :

The angles = (x-40),(x-30) and (2x+10)

To find :

The measure of angles

Solution :

We know that, all Angles in the triangle sum up and make 180°.

Equation made :

\boxed{\tt{(x-40) + (x-30) +  (2x+10) = 180^{\circ}}}

\tt{\implies} \: (x - 40) + (x - 30) + (2x + 10) = 180

\tt{\implies} \: x + x + 2x + \{- 40 +  (- 30)  + 10\} = 180

\tt{\implies} \: 4x + ( - 60) = 180

\tt{\implies} \: 4x = 180 + 60

\tt{\implies} \: 4x = 240

\tt{\implies} \: x =  \dfrac{240}{4}

\tt{\implies} \: x = 60

Value of (x - 40)

\tt{\implies} \: 60 - 40

\tt{\implies} \: 20

Value of (x - 30)

\tt{\implies} \: 60 - 30

\tt{\implies} \: 30

Value of (2x + 10)

\tt{\implies} \: (2 \times 60) + 10

\tt{\implies} \: 120 + 10

\tt{\implies} \: 130

The angles of the triangle are :

• 20°

• 30°

• 130°

\therefore The angles of the Triangle are 20°, 30° and 130°.

\mathfrak{\large{\underline{\underline{Verification :-}}}}

\tt{\implies} \: 20 + 30 + 130 \\ \tt{\implies} \: 50 + 130 \\ \tt{\implies} \: 180

\therefore The angles of the Triangle are 20°, 30° and 130°.


Anonymous: hey
Anonymous: but
Anonymous: i got 3 time
Anonymous: do
Anonymous: k.
Anonymous: h.
Anonymous: a.
Answered by Anonymous
11

Answer :-

Given :-

The angles of triangle = (x - 40), (x - 30), (2x + 10).

To Find :-

Measure of each angle.

Solution :-

We know that the sum of angles of a triangle is equal to 180°.

So,

\implies{\sf{(x - 40) + (x - 30) + (2x + 10) = 180 \textdegree}}

\implies{\sf{x - 40 + x - 30 + 2x + 10 = 180 \textdegree}}

\implies{\sf{4x - 60 = 180 \textdegree}}

\implies{\sf{4x = 180 + 60}}

\implies{\sf{4x = 240 \textdegree}}

\implies{\sf{x = \dfrac{240}{4}}}

\implies{\sf{x = 60}}

So, the measure of angles are :-

\sf{=) x - 40 = 60 - 40 = 20 \textdegree}

\sf{=) x - 30 = 60 - 30 = 30 \textdegree}

\sf{=) 2x + 10 = 120 + 10 = 130 \textdegree}

So, the three angles are :-

\sf{\boxed{\star{\bf{20 \textdegree, 30 \textdegree and\ 130 \textdegree}}}}

Verification :-

\sf{20 \textdegree + 30 \textdegree+ 130 \textdegree = 180 \textdegree}

\sf{180 \textdegree = 180 \textdegree}

\sf{Hence, Verified !!}

Similar questions