Math, asked by jeevithajayaram04, 6 months ago

the angles of a yriangle plot are inthe ratio 6:4:2measure all the three angles​

Answers

Answered by Anonymous
9

Answer:

6x + 4x + 2x = 180⁰

12x = 180⁰ => x = 180/12 = 15

Angles are 90⁰, 60⁰ and 30⁰

{\huge{\fcolorbox{blue}{black}{\orange{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed {\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underbrace{\overbrace{\mathcal{\blue{\fcolorbox{red}{black}{hope it will help you }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Answered by vanshikavikal448
38

 \huge \bold \color{green}༆ \mathfrak \red{required \: answer}༆

 \bold \color{blue}{ \underline{ \underline \orange{given}}} \orange→

ratio of angles of a traingle us 6:4:2

 \bold \color{blue}{ \underline{ \underline \orange{answer}}} \orange→

90° , 60° and 30°

 \bold \color{blue}{ \underline{ \underline \orange{solution}}} \orange→

since ratio of angles is 6:4:2

let angles of a triangle are 6x, 4x and 2x

 \bold { \underline{ \underline{concept}}}→

sum of angles of a triangle is 180°

 \implies \: 6x + 4x + 2x = 180 \\  \implies \: 12x = 180 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \implies \: x = 15  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now substitute the value of x in angles..

angles of triangle are;

6 \times 15 = 90 \degree \\  \\ 4 \times 15 = 60 \degree \\  \\ 2 \times 15  = 60 \degree

so angles of a triangle are,

90° , 60° and 30°

 \bold { \underline{ \underline \purple{for \: more \: information}}} \purple→

perimeter of ∆ = sum of sides of ∆

area of ∆ = 1/2 × base × hight

by heron's formula..area of ∆ ;

 =  \sqrt{s( s - a)(s - b)(s - c)}  \\ \\  where \: s =  \frac{a  + b + c}{2}  \\

hypotenuse is the greatest side of a right angle triangle

sum of angles of a triangle is 180°

angles opposite to equal sides are equal in a ∆

sides opposite to equal angles are equal in a ∆

exterior angle of a ∆ is equal to sum of two opposite sides of a ∆

Similar questions