Math, asked by gaurav6, 1 year ago

the angles of an triangle are (x-40) , (x-20) and (x/2 - 10) . find the value of x and then the angles of an triangle.

Answers

Answered by TPS
679
Sum of angles of a triangle is 180°

the angles are (x-40) , (x-20) and (x/2 - 10).

Sum = (x-40) + (x-20) + (x/2 - 10) = 180
⇒ 5x/2 - 70 = 180
⇒ 5x/2 = 180+70 = 250
⇒ x = 250×2/5 
⇒ x = 100

Angles are:
x-40 = 100 - 40 = 60
x - 20 = 100 - 20 = 80
x/2 - 10 = 100/2 - 10 = 40
Answered by ridhimakh1219
10

Given:

A triangle is given with angle (x-40) , (x-20) and (x/2 - 10).

To Find:

Find the value of x and then the angles of a triangle?

Step-by-step explanation:

  • Angle of triangle are (x-40) , (x-20) and (x/2 - 10) .
  • We know that, sum of all the three angles of triangle are 180°.

         (x-40)+(x-20)+(\frac{x}{2} -10)=180^\circ

          \frac{2x-80+2x-40+x-20}{2}=180^\circ

                        5x-140=360

                        5x=(360+140)

                         x=\frac{500}{5}=100

 Value of x is 100.

  • Now, we will put the value of x in the given angles to get the exact vales of angles of triangle.
  • First angle of triangle is (x-40).

        put value of x          

        (100-40)^\circ=60^\circ

        Second  angle is (x-20)

        (100-20)=80^\circ

        Third Angle is

         (\frac{x}{2} -10)=\frac{100}{2} -10=40^\circ

Hence, the value of x is 100 and angles of triangleare 60°, 80°, and 40° respectivily.

Similar questions