the angles of apolygon are in AP with common difference 5 if the smallest angle is 120degree find the number of sides of the polygon.?
Answers
Concepts used:
☞ Sum of interior angles of a polygon = (n - 2) × 180°
☞ Sum of n terms = (n ÷ 2) [2a + (n - 1)d]
Solution:
It is given that:
- First term = a = 120°
- Common difference = d = 5
According to the question,
Sum of interior angles = Sum of n terms
⇒ (n - 2) × 180 = (n ÷ 2) [2a + (n - 1)d]
⇒ (n - 2) × 180 = (n ÷ 2) [2 × 120 + (n - 1)5]
⇒ (n - 2) × 180 = (n ÷ 2) [240 + 5n - 5]
⇒ (n - 2) × 180 = (n ÷ 2) [5n + 235]
⇒ (n - 2) × 180 = [n (5n + 235)] ÷ 2
⇒ 180n - 360 = (5n² + 235n) ÷ 2
⇒ 2(180n - 360) = 5n² + 235n
⇒ 360n - 720 = 5n² + 235n
⇒ 5n² + 235n = 360n - 720
⇒ 5n² + 720 = 360n - 235n
⇒ 5n² + 720 = 125n
⇒ 5n² - 125n + 720 = 0
Dividing by 5 on both sides,
➥ n² - 25n + 144 = 0
Factorise the above quadratic equation by splitting the middle term.
n² - 16n - 9n + 144 = 0
➝ n (n - 16) -9 (n - 16) = 0
➝ (n - 9) (n - 16) = 0
∴ n = 16 or 9
If n = 16
16th angle
= a + (n - 1)d
= 120 + (16 - 1)5
= 120 + 15(5)
= 120 + 75
= 195°
This is not possible because an angle in a polygon cannot be greater than 180°