Math, asked by kiduniversal000, 22 days ago

The angles of depression of the top and the bottom of a 15 m tall building from the top of a multistoried building are 30 and 60°, respectively. Find the height of the multistoried building and the distance between the two buildings. (Take V3 = 1.732).​

Answers

Answered by nandadeva2011
1

Answer:

AB and CD be the multi-storied building and the building respectively.

Let the height of the multi-storied building be hm and the distance between the two building be xm

AE=CD=8m                 [ Given ]

BE=AB−AE=(h−8)m and 

AC=DE=xm      [  Given ]

Now, in △ACB,

⇒  tan45o=ACAB

⇒  1=xh

∴  x=h          ---- ( 1 )

In △BDE,

⇒  tan30o=EDBE

⇒  31=xh−8

∴  x=3(h−8)             ------ ( 2 )

⇒  h=3h−83

⇒  3h−h=83

⇒  

Step-by-step explanation:

AB and CD be the multi-storied building and the building respectively.

Let the height of the multi-storied building be hm and the distance between the two building be xm

AE=CD=8m                 [ Given ]

BE=AB−AE=(h−8)m and 

AC=DE=xm      [  Given ]

Now, in △ACB,

⇒  tan45o=ACAB

⇒  1=xh

∴  x=h          ---- ( 1 )

In △BDE,

⇒  tan30o=EDBE

⇒  31=xh−8

∴  x=3(h−8)             ------ ( 2 )

⇒  h=3h−83

⇒  3h−h=83

⇒  

Answered by shadhanyadav481
1

Answer:

the correct answer is 1 by 2

Similar questions