The angles of elevation of the top of a lighthouse from 3 boats A, B and C in a straight line of same side of the light house are a, 2a, 3a respectively. If the distance between the boats A and B and the boats B and C are x and y respectively, find the height of lighthouse.
Answers
Answered by
43
____________________________
The angles of elevation of the top of a lighthouse from 3 boats A, B and C in a straight line of same side of the light house are a, 2a, 3a respectively. If the distance between the boats A and B and the boats B and C are x and y respectively, find the height of lighthouse.
____________________________
Given, AB = x and BC = y
Exterior angle = Sum of opposite interior angles
∠PBQ = ∠BQA + ∠BAQ and
∠PCQ = ∠CBQ + ∠CQB
AB = x = QB
By applying the sine rule,
∆BQC we get
➼ ![\frac{BQ}{sin∠QCB}= \frac{BQ}{sin∠QCB}=](https://tex.z-dn.net/?f=%5Cfrac%7BBQ%7D%7Bsin%E2%88%A0QCB%7D%3D)
![\frac{BC}{sin∠CQB} \frac{BC}{sin∠CQB}](https://tex.z-dn.net/?f=%5Cfrac%7BBC%7D%7Bsin%E2%88%A0CQB%7D)
➼ ![\frac{x}{sin(180°-3a)}= \frac{x}{sin(180°-3a)}=](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7Bsin%28180%C2%B0-3a%29%7D%3D)
![\frac{y}{sin\:a} \frac{y}{sin\:a}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bsin%5C%3Aa%7D)
➼ ![\frac{x}{y}= \frac{x}{y}=](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7By%7D%3D)
![\frac{sin3a}{sin\:a}= \frac{sin3a}{sin\:a}=](https://tex.z-dn.net/?f=%5Cfrac%7Bsin3a%7D%7Bsin%5C%3Aa%7D%3D)
![\frac{3sin\:a-4sin^3a}{sin\:a} \frac{3sin\:a-4sin^3a}{sin\:a}](https://tex.z-dn.net/?f=%5Cfrac%7B3sin%5C%3Aa-4sin%5E3a%7D%7Bsin%5C%3Aa%7D)
➼ ![4sin^2a=3- 4sin^2a=3-](https://tex.z-dn.net/?f=4sin%5E2a%3D3-)
![\frac{x}{y}=\frac{3y-x}{y} \frac{x}{y}=\frac{3y-x}{y}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7By%7D%3D%5Cfrac%7B3y-x%7D%7By%7D)
➼ ![sin^2a=\frac{3y-x}{4y} sin^2a=\frac{3y-x}{4y}](https://tex.z-dn.net/?f=sin%5E2a%3D%5Cfrac%7B3y-x%7D%7B4y%7D)
➼ ![2sinacosa=\frac{h}{x} 2sinacosa=\frac{h}{x}](https://tex.z-dn.net/?f=2sinacosa%3D%5Cfrac%7Bh%7D%7Bx%7D)
➼ ![4sin^2a\:cos^2a=\frac{h^2}{x^2} 4sin^2a\:cos^2a=\frac{h^2}{x^2}](https://tex.z-dn.net/?f=4sin%5E2a%5C%3Acos%5E2a%3D%5Cfrac%7Bh%5E2%7D%7Bx%5E2%7D)
➼ ![4\:.\frac{3y-x}{4y}\:.\frac{x+y}{4y}=\frac{h^2}{x^2} 4\:.\frac{3y-x}{4y}\:.\frac{x+y}{4y}=\frac{h^2}{x^2}](https://tex.z-dn.net/?f=4%5C%3A.%5Cfrac%7B3y-x%7D%7B4y%7D%5C%3A.%5Cfrac%7Bx%2By%7D%7B4y%7D%3D%5Cfrac%7Bh%5E2%7D%7Bx%5E2%7D)
➼ ![h^2=\frac{x^2}{4y^2}(3y-x)(x+y) h^2=\frac{x^2}{4y^2}(3y-x)(x+y)](https://tex.z-dn.net/?f=h%5E2%3D%5Cfrac%7Bx%5E2%7D%7B4y%5E2%7D%283y-x%29%28x%2By%29)
Similar questions