Math, asked by hemashankareagl7616, 6 months ago

The angles of quadrilateral are x - 10°, x + 10°, x and x + 20°. what will be the measure of the largest angle of the quadrilateral?

Answers

Answered by sethrollins13
7

Given :

  • Angles of quadrilateral are x - 10°, x + 10°, x and x + 20°.

To Find :

  • Measure of the largest angle of Quadrilateral.

Solution :

As we know that Sum of all the angles of a quadrilateral is 360°. So ,

\longmapsto\tt{x{\cancel{-10}}\degree+x{\cancel{+10}}\degree+x+x+20=360\degree}

\longmapsto\tt{4x+20\degree=360\degree}

\longmapsto\tt{4x=360\degree-20\degree}

\longmapsto\tt{4x=340\degree}

\longmapsto\tt{x=\cancel\dfrac{340}{4}}

\longmapsto\tt\bf{x=85}

Value of x is 85 ...

Therefore :

\longmapsto\tt{Measure\:of\:1st\:Angle=85\degree-10\degree}

\longmapsto\tt\bf{75\degree}

\longmapsto\tt{Measure\:of\:2nd\:Angle=85\degree+10\degree}

\longmapsto\tt\bf{95\degree}

\longmapsto\tt\bf{Measure\:of\:3rd\:Angle=85\degree}

\longmapsto\tt{Measure\:of\:4th\:Angle=85\degree+20\degree}

\longmapsto\tt\bf{105\degree}

So , The Measure of the largest angle is 105°...

Similar questions