Physics, asked by ItZkeshavi93, 3 months ago

❍ The angles of the Quadrilateral are x°, (x – 10)°, (x + 30)° and 2x° respectively.

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}⠀⠀⠀⠀

The sum of all angles of the Quadrilateral is 360°. Therefore,

:\implies\sf x + (x - 10)^\circ + (x + 30)^\circ + 2x = 360^\circ \\\\\\:\implies\sf x + x + x + 2x - 10 + 30 = 360^\circ \\\\\\:\implies\sf  3x + 2x - 10 + 30= 360^\circ \\\\\\:\implies\sf 5x + 20 = 360^\circ \\\\\\:\implies\sf 5x =  360^\circ - 20 \\\\\\:\implies\sf 5x = 340^\circ \\\\\\:\implies\sf x = \cancel\dfrac{340^\circ}{5} \\\\\\:\implies{\underline{\boxed{\frak{\purple{x = 68^\circ}}}}}\;\bigstar

Hence,

First angle, x = 68°
Second angle, (x - 10)° = (68 - 10)° = 58°
Third angle, (x + 30)° = (68 + 30)° = 98°
Fourth angle, 2x = 2(68)° = 136°

\therefore{\underline{\sf{Hence, the\;greatest\;angle\;is\;\bf{136^\circ }.}}}

━━━━━━━━━━━━━━━━━━━⠀⠀⠀

V E R I F I C A T I O N :

As we know that sum of the all angles of Quadrilateral is 360°. And, we've measure of each angle. So, Let's verify :

\dashrightarrow\sf a + b + c + d = 360^\circ \\\\\\\dashrightarrow\sf 68^\circ + 58^\circ + 98^\circ + 136^\circ = 360^\circ \\\\\\\dashrightarrow{\boxed{\underline{\sf{360^\circ = 360^\circ}}}}

\therefore{\underline{\textsf{\textbf{Hence Verified!}}}}
ha..ha..La,tEx ki co.d.e copy ker li..​

Answers

Answered by Salmonpanna2022
2

Explanation:

❍ The angles of the Quadrilateral are x°, (x – 10)°, (x + 30)° and 2x° respectively.

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

†Asweknowthat:

⠀⠀⠀⠀

The sum of all angles of the Quadrilateral is 360°. Therefore,

\begin{gathered}:\implies\sf x + (x - 10)^\circ + (x + 30)^\circ + 2x = 360^\circ \\\\\\:\implies\sf x + x + x + 2x - 10 + 30 = 360^\circ \\\\\\:\implies\sf 3x + 2x - 10 + 30= 360^\circ \\\\\\:\implies\sf 5x + 20 = 360^\circ \\\\\\:\implies\sf 5x = 360^\circ - 20 \\\\\\:\implies\sf 5x = 340^\circ \\\\\\:\implies\sf x = \cancel\dfrac{340^\circ}{5} \\\\\\:\implies{\underline{\boxed{\frak{\purple{x = 68^\circ}}}}}\;\bigstar\end{gathered}

:⟹x+(x−10)

+(x+30)

+2x=360

:⟹x+x+x+2x−10+30=360

:⟹3x+2x−10+30=360

:⟹5x+20=360

:⟹5x=360

−20

:⟹5x=340

:⟹x=

5

340

:⟹

x=68

Hence,

First angle, x = 68°

Second angle, (x - 10)° = (68 - 10)° = 58°

Third angle, (x + 30)° = (68 + 30)° = 98°

Fourth angle, 2x = 2(68)° = 136°

\therefore{\underline{\sf{Hence, the\;greatest\;angle\;is\;\bf{136^\circ }.}}}∴

Hence,thegreatestangleis136

.

━━━━━━━━━━━━━━━━━━━⠀⠀⠀

V E R I F I C A T I O N :

As we know that sum of the all angles of Quadrilateral is 360°. And, we've measure of each angle. So, Let's verify :

\begin{gathered}\dashrightarrow\sf a + b + c + d = 360^\circ \\\\\\\dashrightarrow\sf 68^\circ + 58^\circ + 98^\circ + 136^\circ = 360^\circ \\\\\\\dashrightarrow{\boxed{\underline{\sf{360^\circ = 360^\circ}}}}\end{gathered}

⇢a+b+c+d=360

⇢68

+58

+98

+136

=360

360

=360

 {}^{ \please \: mark \: me \: brainlist \: ans.}

Answered by manojchauhanma2
0

Answer:

❍ The angles of the Quadrilateral are x°, (x – 10)°, (x + 30)° and 2x° respectively.

⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

†Asweknowthat:

⠀⠀⠀⠀

The sum of all angles of the Quadrilateral is 360°. Therefore,

\begin{gathered}:\implies\sf x + (x - 10)^\circ + (x + 30)^\circ + 2x = 360^\circ \\\\\\:\implies\sf x + x + x + 2x - 10 + 30 = 360^\circ \\\\\\:\implies\sf 3x + 2x - 10 + 30= 360^\circ \\\\\\:\implies\sf 5x + 20 = 360^\circ \\\\\\:\implies\sf 5x = 360^\circ - 20 \\\\\\:\implies\sf 5x = 340^\circ \\\\\\:\implies\sf x = \cancel\dfrac{340^\circ}{5} \\\\\\:\implies{\underline{\boxed{\frak{\purple{x = 68^\circ}}}}}\;\bigstar\end{gathered}

:⟹x+(x−10)

+(x+30)

+2x=360

:⟹x+x+x+2x−10+30=360

:⟹3x+2x−10+30=360

:⟹5x+20=360

:⟹5x=360

−20

:⟹5x=340

:⟹x=

5

340

:⟹

x=68

Similar questions