Math, asked by mishtybabu8877, 8 months ago

the angles of triangle are 2x, 3x and 5x. Find the value of x in degrees

Answers

Answered by prince5132
15

GIVEN :-

  • The angles of triangle are 2x, 3x and 5x.

TO FIND :-

  • The value of x.

SOLUTION ;-

☯ The sum of angle of triangle is 180 °.

➬ 2x + 3x + 5x = 180°

➬ 10x = 180°

➬ x = 180/10

➬ x = 18°

Hence the value of x is 18°.

☯ Hence all the angles of Triangle,

1st angle:-

➫ 2x = 2 × 18

36°.

2nd angle:-

➫ 3x = 3 × 18

54°.

3rd angle:-

➫ 5x = 5 × 18

90°.

VERIFICATION :-

☯ The sum of angle of triangle is 180 °.

➬ 2x + 3x + 5x = 180°

➬ 36° + 54° + 90° = 180°

➬ 180° = 180°

L.H.S = R.H.S

HENCE VERIFIED ✔

Answered by Anonymous
20

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow angles\:of\:triangle\:are\:2x,3x\:and\:5x

\large\underline\bold{TO\:FIND,}

\sf\therefore VALUE\:OF\:"X"

ACCORDING TO THE QUESTION,

PROPERTY IN USE,

\sf\large\underline\bold{ANGLE\:SUM\:PROPERTY\:OF\:TRIANGLE\:[180 \degree]}

\large\underline\bold{SOLUTION,}

USING ANGLE SUM PROPERTY,

\sf\implies 2x + 3x + 5x = 180 \degree

\sf\implies 5x+5x=180\degree

\sf\implies 10x= 180\degree

\sf\implies x= \dfrac{180}{10}

\sf\implies x=  \cancel \dfrac{180}{10}

\sf\implies x=18 \degree

\large{\boxed{\bf{ x=18\degree}}}

\sf\large\therefore NOW, \:FINDING\:THE\:VALUE\:OF\:OTHER\:TWO\:SIDES.

\sf\implies FOR,\:2x

\sf\therefore x=18\degree

\sf\implies 2 \times (18)

\sf\implies 36 \degree

\large{\boxed{\bf{ 2x=36\degree}}}

\sf\implies FOR,\:3x

\sf\therefore x=18\degree

\sf\implies 3 \times (18)

\sf\implies 54\degree

\large{\boxed{\bf{ 3x=54\degree}}}

\sf\implies FOR,\:5x

\sf\therefore x=18\degree

\sf\implies 5 \times (18)

\sf\implies 90 \degree

\large{\boxed{\bf{ 5x=90\degree}}}

\large\underline\bold{the\:value\:of\:x\:is\:18 \degree,}

\large\underline\bold{\therefore the\:angles\:of\:triangles\:are\:=36\degree ,54 \degree ,90 \degree}

__________________________

Similar questions